996 resultados para microbial biomass N
Resumo:
The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.
Resumo:
A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.
Resumo:
Forensic taphonomy involves the use of decomposition to estimate postmortem interval (PMI) or locate clandestine graves. Yet, cadaver decomposition remains poorly understood, particularly following burial in soil. Presently, we do not know how most edaphic and environmental parameters, including soil moisture, influence the breakdown of cadavers following burial and alter the processes that are used to estimate PMI and locate clandestine graves. To address this, we buried juvenile rat (Rattus rattus) cadavers (∼18 g wet weight) in three contrasting soils from tropical savanna ecosystems located in Pallarenda (sand), Wambiana (medium clay), or Yabulu (loamy sand), Queensland, Australia. These soils were sieved (2 mm), weighed (500 g dry weight), calibrated to a matric potential of -0.01 megapascals (MPa), -0.05 MPa, or -0.3 MPa (wettest to driest) and incubated at 22 °C. Measurements of cadaver decomposition included cadaver mass loss, carbon dioxide-carbon (CO2-C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, ninhydrin-reactive nitrogen (NRN) and soil pH. Cadaver burial resulted in a significant increase in CO2-C evolution, MBC, enzyme activities, NRN and soil pH. Cadaver decomposition in loamy sand and sandy soil was greater at lower matric potentials (wetter soil). However, optimal matric potential for cadaver decomposition in medium clay was exceeded, which resulted in a slower rate of cadaver decomposition in the wettest soil. Slower cadaver decomposition was also observed at high matric potential (-0.3 MPa). Furthermore, wet sandy soil was associated with greater cadaver decomposition than wet fine-textured soil. We conclude that gravesoil moisture content can modify the relationship between temperature and cadaver decomposition and that soil microorganisms can play a significant role in cadaver breakdown. We also conclude that soil NRN is a more reliable indicator of gravesoil than soil pH.
Does repeated burial of skeletal muscle tissue (Ovis aries) in soil affect subsequent decomposition?
Resumo:
The repeated introduction of an organic resource to soil can result in its enhanced degradation. This phenomenon is of primary importance in agroecosystems, where the dynamics of repeated nutrient, pesticide, and herbicide amendment must be understood to achieve optimal yield. Although not yet investigated, the repeated introduction of cadaveric material is an important area of research in forensic science and cemetery planning. It is not currently understood what effects the repeated burial of cadaveric material has on cadaver decomposition or soil processes such as carbon mineralization. To address this gap in knowledge, we conducted a laboratory experiment using ovine (Ovis aries) skeletal muscle tissue (striated muscle used for locomotion) and three contrasting soils (brown earth, rendzina, podsol) from Great Britain. This experiment comprised two stages. In Stage I skeletal muscle tissue (150 g as 1.5 g cubes) was buried in sieved (4.6 mm) soil (10 kg dry weight) calibrated to 60% water holding capacity and allowed to decompose in the dark for 70 days at 22 °C. Control samples comprised soil without skeletal muscle tissue. In Stage II, soils were weighed (100 g dry weight at 60% WHC) into 1285 ml incubation microcosms. Half of the soils were designated for a second tissue amendment, which comprised the burial (2.5 cm) of 1.5 g cube of skeletal muscle tissue. The remaining half of the samples did not receive tissue. Thus, four treatments were used in each soil, reflecting all possible combinations of tissue burial (+) and control (−). Subsequent measures of tissue mass loss, carbon dioxide-carbon evolution, soil microbial biomass carbon, metabolic quotient and soil pH show that repeated burial of skeletal muscle tissue was associated with a significantly greater rate of decomposition in all soils. However, soil microbial biomass following repeated burial was either not significantly different (brown earth, podsol) or significantly less (rendzina) than new gravesoil. Based on these results, we conclude that enhanced decomposition of skeletal muscle tissue was most likely due to the proliferation of zymogenous soil microbes able to better use cadaveric material re-introduced to the soil.
Resumo:
Biocidal treatment of soil is used to remove or inhibit soil microbial activity, and thus provides insight into the relationship between soil biology and soil processes. Chemical (soil pH, phosphodiesterase, protease) and biological (substrate induced respiration) characteristics of three contrasting soils from tropical savanna ecosystems in north Queensland, Australia were measured in field fresh samples and following autoclaving (121 °C/103 kPa for 30 min on two consecutive days). Autoclaving treatment killed the active soil microbial biomass and significantly decreased protease activity (∼90%) in all three soils. Phosphodiesterase activity in kaolinitic soils also significantly decreased by 78% and 92%. However, autoclave treatment of smectitic soil only decreased phosphodiesterase activity by 4% only. This study demonstrates phosphodiesterase can remain stable in extreme conditions. This might be a characteristic vital to the cycling of phosphorus in shrink–swell clays in Australian tropical savanna ecosystems.
Resumo:
Three sludge types from the same treatment stream (undigested liquid, anaerobically digested liquid and dewatered, anaerobically digested cake) were used in a field based tub study. Amendments (4, 8, and 16 Mg dry solid (ds)ha(-1)) were incorporated into the upper 15 cm of a sandy loam soil prior to sowing with rye-grass (Lolium perenne L.). Nitrogen transformations in the soil were determined for the 80 d period following incorporation. Nitrogen uptake and crop yield were measured in the cut sward 35 and 70 d after sowing. The study showed that application of sewage sludge at rates as low as 4 Mgha(-1) can have a nutritional benefit to rye-grass over the two harvests. Differences in N transformation, and hence crop nutritional benefit, between sludge types were evident throughout the experiment. In particular, the dewatering process changed the mineral N characteristics of the anaerobically digested sludge, which, when not dewatered, outperformed the other sludges in terms of yield and mineralisation rate at both harvests. The dewatered sludge produced the lowest yield of rye-grass. The undigested liquid sludge had the lowest foliar N and soil NO(3)-N concentrations, possibly immobilised as the large oxidisable C component of this sludge was metabolised by the microbial biomass. Correlation data support the concept of preferential uptake of NH(4)-N over NO(3)-N in Lolium perenne. Results are discussed in the context of managing sludge type and application for a plant nutrient source and NO(3)-N release.
Resumo:
Sewage sludge from wastewater treatment contains organic matter and plant nutrients that can play an important role in agricultural production and the maintenance of soil fertility, The present study has aimed to evaluate the degree of humification following sewage sludge application of soil organic matter by laser-induced fluorescence and humic acids using ultraviolet-visible fluorescence, and including comparison with Fourier-transform infrared spectroscopy and elemental analysis. Sewage sludge applications to the soil caused a decrease in the degree of humification of the soil organic matter and humic acids for both a Typic Eutrorthox (clayey) soil and a Typic Haplorthox (sandy) soil of around 14 and 27%, respectively. This effect is probably clue to incorporation of newly formed humic substances from the sewage sludge into the characteristics of less humified material, and to the indigenous soil humic substances. The minor alterations observed in the clay soil probably occurred due to both the greater mineral association, which better stabilized the indigenous soil organic matter, and the higher microbial activity in this soil, which accelerated sewage sludge mineralization. Sewage sludge applications increased the C content for the clay and sandy soils by 7.4 and 15.4 g kg(-1), respectively, suggesting a positive effect on these two soils.
Resumo:
The main aim of the present study was to evaluate and compare temporal responses of the benthos in 2 continental shelf areas (Cabo Frio and Ubatuba) off the SE Brazilian coast. In Cabo Frio (23 degrees S, 42 degrees W), the western boundary coastal upwelling of the South Atlantic Central Water (SACW) enhances primary productivity, potentially increasing food supply to the benthic communities via sinking of particulate organic carbon (POC). In contrast, POC fluxes in Ubatuba (23 degrees S, 45 degrees W) are expected to be comparatively lower because SACW remains subsurface. We analyzed the temporal and spatial input of phytodetritus (concentration of chlorophyll a in sediments) and the benthic microbial biomass (estimated by ATP-based carbon content in sediments). Median surface chlorophyll concentration was computed for all daily available SeaWiFS images (from 2001 and 2002) to follow chlorophyll a inputs. All parameters used to investigate benthic responses in the study areas showed consistently higher values in Cabo Frio than in Ubatuba. The results showed that benthic response to upwelling may last months, fueling the microbial communities in the Cabo Frio region.
Resumo:
The possibility of using yeast from alcohol distilleries as a source of nutrients in soil was investigated. The following treatments were used: no fertilization (control), 0.5% (w/w) yeast, 1% (w/w) yeast, and NPK. The decomposition of yeast was monitored for 90 days in two soils. The CO, production and the microbial biomass were increased by art average of 1- to 3-fold by yeast incorporation compared to control. Protease activity also was enhanced 3- to 8-fold in the soils supplemented with yeast compared to control. The phosphatase activities were higher than control only during the first days. While nitrate contents increased in all treatments compared to control, available P only increased in the soils amended with 1%, yeast or NPK by 45-119% and 309-489%, respectively. These results indicate that there exists an excellent potential for the use of yeast in the soil as a source of nitrate and available P for plant nutrition. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Os efeitos da lotação de animais na produção de ovinos têm sido bastante estudados. No entanto, informações sobre seus efeitos na biomassa e nas atividades microbianas e, em conseqüência, na fertilidade do solo de pastagens são escassas. Neste trabalho, os efeitos da lotação de ovinos (LO) na biomassa e nas atividades microbianas responsáveis pela transformação dos compostos do C e N em solo de clima subtropical foram avaliados. As amostras de solo foram coletadas nas camadas de 0-10 e 10-20 cm de pastos com baixa LO (5 animais ha-1), alta LO (40-50 animais ha-1) e com ausência de animais, em um delineamento inteiramente casualizado em parcelas subdivididas, com seis repetições. Os maiores valores de biomassa microbiana e das atividades respiratória, nitrificante e enzimática (urease e protease) foram encontrados nos solos dos pastos com baixa LO. Estes pastos também acumularam as maiores quantidades de matéria orgânica e N total. Essas variáveis foram reduzidas nos pastos sem animais ou com alta LO. Vegetação descontínua e intensa mineralização podem ter acarretado a diminuição dessas variáveis nos pastos com alta LO. Alta correlação foi obtida entre matéria orgânica, C orgânico e N total com as quantidades de biomassa microbiana e a atividade enzimática. A camada de 0-10 cm apresentou valores maiores das variáveis estudadas do que os encontrados na camada de 10-20 cm.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente experimento, inteiramente casualizado, foi desenvolvido em condições de laboratório no Departamento de Defesa Fitossanitária, FCA/UNESP - Botucatu, entre julho e setembro de 1992. Amostras de Areia Quartzosa equivalentes à 40 g de terra seca à 105 oC ± 2 com ou sem adição de 1,9 g de matéria seca de plantas de poaia-branca (Richardia brasiliensis), 0,19 g de nitrogênio (NH4)2SO4 e 0,88 g de apatita de Araxá, foram incubadas no escuro a 25 o C ± 2 , com umidade mantida a 60% da capacidade de retenção de água. Durante a incubação, determinou-se o CO2 liberado, utilizando-se o método de retenção em NAOH seguida de titulometria com HCl; a biomassa microbiana, método de fumigação-incubação; o pH e a quantidade de fósforo extraído por resina. A maior liberação de CO2 ocorreu durante os dez primeiros dias de incubação, com 77% do total de carbono liberado nos tratamentos com adição de poaia, e 37% nos tratamentos sem adição da mesma. A liberação de CO2 foi 57 vezes maior nos tratamentos com poaia em relação ao controle. A poaia também provocou aumentos na biomassa microbiana (média de 8 vezes a biomassa do tratamento controle), e a adição de nitrogênio e/ou fosfato de rocha junto à poaia antecipou os picos de formação de biomassa de 20 para 10 dias de incubação. Os níveis de fósforo disponível foram maiores no tratamento com adição de fosfato de rocha apenas. A poaia também alcalinizou o sistema, não permitindo desta forma, observar-se relação significativa entre pH e teor de fósforo disponível.
Resumo:
O objetivo deste trabalho foi quantificar variáveis microbiológicas e produtividade do feijoeiro em razão do manejo do solo e da calagem. Parte de uma área cultivada há 20 anos em plantio direto (PD) foi submetida ao cultivo mínimo (CM), com escarificação a 0,25 m de profundidade, para incorporação do calcário. Os tratamentos consistiram de manejo do solo (PD e CM) e 0 e 2 t ha-1 de calcário dolomítico aplicadas na superfície, com quatro repetições. Os maiores valores de C da biomassa microbiana foram verificados no CM e os de C de CO2 liberado no PD sem calagem. A menor colonização micorrízica e a maior esporulação foram observadas no CM sem calagem. Não foram detectadas diferenças entre os tratamentos em relação à produção de matéria seca, enquanto na produtividade de grãos, o maior valor foi verificado no CM com calagem. É possível evitar a interrupção do PD com aplicação de calcário na superfície, visto que a incorporação do material de cobertura e a calagem pouco alteraram a estabilidade do sistema, conforme comprovado pelos valores estatísticos semelhantes de C do CO2 liberado e pelas pequenas diferenças observadas nas demais variáveis entre manejos.