992 resultados para metacyclic yields
Ground-water conditions and well yields in fractured rocks, southwestern Nevada County, California /
Resumo:
Spine title: Ground-water conditions, well yields in fractured rocks, southwestern Nevada County, CA.
Resumo:
We have produced human fibroblast growth factor 1 (hFGF1) in the methylotrophic yeast Pichia pastoris in order to obtain the large amounts of active protein required for subsequent functional and structural characterization. Four constructs were made to examine both intracellular and secreted expression, with variations in the location of the His6 tag at either end of the peptide. hFGF1 could be produced from all four constructs in shake flasks, but production was optimized by growing only the highest-yielding of these strains, which produced hFGF1 intracellularly, under tightly controlled conditions in a 3 L fermentor. One hundred and eight milligrams of pure protein was achieved per liter culture (corresponding to 0.68 mg of protein per gram of wet cells), the function of which was verified using NIH 3T3 cell cultures. This is a 30-fold improvement over previously reported yields of full-length hFGF1. © 2006 Elsevier Inc. All rights reserved.
The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability
Resumo:
This paper investigates four reference fuels and three low lignin Lolium Festuca grasses which were subjected to pyrolysis to produce pyrolysis oils. The oils were analysed to determine their quality and stability, enabling the identification of feedstock traits which affect oil stability. Two washed feedstocks were also subjected to pyrolysis to investigate whether washing can enhance pyrolysis oil quality. It was found that the mineral matter had the dominate effect on pyrolysis in compared to lignin content, in terms of pyrolysis yields for organics, char and gases. However the higher molecular weight compounds present in the pyrolysis oil are due to the lignin derived compounds as determined by results of GPC and liquid-GC/MS. The light organic fraction also increased in yield, but reduced in water content as metals increased at the expense of the lignin content. It was found that the fresh oil and aged oil had different compound intensities/concentrations, which is due to a large number of reactions occurring when the oil is aged day by day. These findings agree with previous reports which suggest that a large amount of re-polymerisation occurs as levoglucosan yields increase during the aging progress, while hydroxyacetaldehyde decrease. In summary the paper reports a window for producing a more stable pyrolysis oil by the use of energy crops, and also show that washing of biomass can improve oil quality and stability for high ash feedstocks, but less so for the energy crops.
Resumo:
Biological processes are subject to the influence of numerous factors and their interactions, which may be non-linear in nature. In a recombinant protein production experiment, understanding the relative importance of these factors, and their influence on the yield and quality of the recombinant protein being produced, is an essential part of its optimisation. In many cases, implementing a design of experiments (DoE) approach has delivered this understanding. This chapter aims to provide the reader with useful pointers in applying a DoE strategy to improve the yields of recombinant yeast cultures.
Resumo:
Pichia pastoris is a widely used host for recombinant protein production. The foaming associated with culturing it on a large scale is commonly prevented by the addition of chemical antifoaming agents or "antifoams." Unexpectedly, the addition of a range of antifoams to both shake flask and bioreactor cultures of P. pastoris has been shown to alter the total yield of the recombinant protein being produced. Possible explanations for this are that the presence of the antifoam increases the total amount of protein being produced and secreted per cell or that it increases the density of the culture. Antifoaming agents may therefore have specific effects on the growth and yield characteristics of recombinant cultures, in addition to their primary action as de-foamers.
Resumo:
In the last 15 years, 80% of all recombinant proteins reported in the literature were produced in the bacterium, Escherichia coli, or the yeast, Pichia pastoris. Nonetheless, developing effective general strategies for producing recombinant eukaryotic membrane proteins in these organisms remains a particular challenge. Using a validated screening procedure together with accurate yield quantitation, we therefore wished to establish the critical steps contributing to high yields of recombinant eukaryotic membrane protein in P. pastoris. Whilst the use of fusion partners to generate chimeric constructs and directed mutagenesis have previously been shown to be effective in bacterial hosts, we conclude that this approach is not transferable to yeast. Rather, codon optimization and the preparation and selection of high-yielding P. pastoris clones are effective strategies for maximizing yields of human aquaporins.
Resumo:
Biological processes are subject to the influence of numerous factors and their interactions, which may be non-linear in nature. In a recombinant protein production experiment, understanding the relative importance of these factors, and their influence on the yield and quality of the recombinant protein being produced, is an essential part of its optimisation. In many cases, implementing a design of experiments (DoE) approach has delivered this understanding. This chapter aims to provide the reader with useful pointers in applying a DoE strategy to improve the yields of recombinant yeast cultures.
Resumo:
This study presents a report on pyrolysis of Napier grass stem in a fixed bed reactor. The effects of nitrogen flow (20 to 60 mL/min), and reaction temperature (450 to 650 degrees C) were investigated. Increasing the nitrogen flow from 20 to 30 mL/min increased the bio-oil yield and decreased both bio-char and non-condensable gas. 30 mL/min nitrogen flow resulted in optimum bio-oil yield and was used in the subsequent experiments. Reaction temperatures between 450 and 600 degrees C increased the bio-oil yield, with maximum yield of 32.26 wt% at 600 degrees C and a decrease in the corresponding bio-char and non-condensable gas. At 650 degrees C, reductions in the bio-oil and bio-char yields were recorded while the non-condensable gas increased. Water content of the bio-oil decreased with increasing reaction temperature, while density and viscosity increased. The observed pH and higher heating values were between 2.43 to 2.97, and 25.25 to 28.88 MJ/kg, respectively. GC-MS analysis revealed that the oil was made up of highly oxygenated compounds and requires upgrading. The bio-char and non-condensable gas were characterized, and the effect of reaction temperature on the properties was evaluated. Napier grass represents a good source of renewable energy when all pyrolysis products are efficiently utilized.
Resumo:
Almost all pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds, which are essential for protein functions. In many cases, disulfidecontaining proteins are produced via in vitro protein folding that involves the oxidation of reduced protein to native protein, a complex process. The in vitro folding of reduced lysozyme has been extensively studied as a model system because native lysozyme is small, inexpensive, and has only four disulfide bonds. The folding of reduced lysozyme is conducted with the aid of a redox buffer consisting of a small molecule disulfide and a small molecule thiol, such as oxidized and reduced glutathione. Herein, in vitro folding rates and yields of lysozyme obtained in the presence of a series of aromatic thiols and oxidized glutathione are compared to those obtained with reduced and oxidized glutathione. Results showed that aromatic thiols significantly increase the folding rate of lysozyme compared to glutathione.
Resumo:
The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5° to 6°C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.