925 resultados para meta-regression
Resumo:
Summary This systematic review demonstrates that vitamin D supplementation does not have a significant effect on muscle strength in vitamin D replete adults. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Introduction The purpose of this study is to systematically review the evidence on the effect of vitamin D supplementation on muscle strength in adults. Methods A comprehensive systematic database search was performed. Inclusion criteria included randomised controlled trials (RCTs) involving adult human participants. All forms and doses of vitamin D supplementation with or without calcium supplementation were included compared with placebo or standard care. Outcome measures included evaluation of strength. Outcomes were compared by calculating standardised mean difference (SMD) and 95% confidence intervals. Results Of 52 identified studies, 17 RCTs involving 5,072 participants met the inclusion criteria. Meta-analysis showed no significant effect of vitamin D supplementation on grip strength (SMD −0.02, 95%CI −0.15,0.11) or proximal lower limb strength (SMD 0.1, 95%CI −0.01,0.22) in adults with 25(OH)D levels >25 nmol/L. Pooled data from two studies in vitamin D deficient participants (25(OH)D <25 nmol/L) demonstrated a large effect of vitamin D supplementation on hip muscle strength (SMD 3.52, 95%CI 2.18, 4.85). Conclusion Based on studies included in this systematic review, vitamin D supplementation does not have a significant effect on muscle strength in adults with baseline 25(OH)D >25 nmol/L. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Keywords Muscle – Muscle fibre – Strength – Vitamin D
Resumo:
There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.
Resumo:
Aim: The primary purpose of this meta-analysis was to explore, clarify and report the strength of the relationship between alexithymia, as measured by the Toronto Alexithymia Scale (TAS-20), and parenting style as measured by the Parental Bonding Instrument (PBI). Methods: Web of Science, PsycInfo, PubMed and ProQuest: Dissertations and Theses searches were undertaken, yielding nine samples with sufficient data to be included in the meta-analysis. Results: Evidence indicated moderate to strong relationships between maternal care and alexithymia, and between maternal care and two of the three TAS-20 alexithymia facets (Difficulties Describing Feelings and Difficulties Identifying Feelings, but not Externally Oriented Thinking). Moderate relationships were observed for both maternal- and paternal-overprotection and alexithymia respectively, and for overprotection (both maternal and paternal) and Difficulties Describing Feelings. Conclusion: This study is the first meta-analysis of the relationship between parenting styles and alexithymia, and findings confirm an especially strong association between maternal care and key elements of alexithymia. This review highlights the issues that still remain to be addressed in exploring the link between parenting style and alexithymia.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
Background The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Extreme temperatures have been shown to have a detrimental effect on health. Hot temperatures can increase the risk of mortality, particularly in people suffering from cardiorespiratory diseases. Given the onset of climate change, it is critical that the impact of temperature on health is understood, so that effective public health strategies can correctly identify vulnerable groups within the population. However, while effects on mortality have been extensively studied, temperature–related morbidity has received less attention. This study applied a systematic review and meta–analysis to examine the current literature relating to hot temperatures and morbidity.