900 resultados para mating
Resumo:
Translocation is an important tool for the conservation of species that have suffered severe range reductions. The success of a translocation should be measured not only by the survival of released animals, but by the reproductive output of individuals and hence the establishment of a self-sustaining population. The bridled nailtail wallaby is an endangered Australian macropod that suffered an extensive range contraction to a single remaining wild population. A translocated population was established and subsequently monitored over a four year period. The aim of this study was to measure the reproductive success of released males using genetic tools and to determine the factors that predicted reproductive success. Captive-bred and wild-caught animals were released and we found significant variation in male reproductive success among release groups. Variation in reproductive success was best explained by individual male weight, survival and release location rather than origin. Only 26% of candidate males were observed to sire an offspring during the study. The bridled nailtail wallaby is a sexually dimorphic, polygynous macropod and reproductive success is skewed toward large males. Males over 5800 g were six times more likely to sire an offspring than males below this weight. This study highlights the importance of considering mating system when choosing animals for translocation. Translocation programs for polygynous species should release a greater proportion of females, and only release males of high breeding potential. By maximizing the reproductive output of released animals, conservation managers will reduce the costs of translocation and increase the chance of successfully establishing a self-sustaining population. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Genetic variation at microsatellite markers was used to quantify genetic structure and mating behavior in a severely fragmented population of the wind-pollinated, wind-dispersed temperate tree Fraxinus excelsior in a deforested catchment in Scotland. Remnants maintain high levels of genetic diversity, comparable with those reported for continuous populations in southeastern Europe, and show low interpopulation differentiation (Theta = 0.080), indicating that historical gene exchange has not been limited (Nm = 3.48). We estimated from seeds collected from all trees producing fruits in three of five remnants that F. excelsior is predominantly outcrossing (t(m). = 0.971 +/- 0.028). Use of a neighborhood model approach to describe the relative contribution of local and long-distance pollen dispersal indicates that pollen gene flow into each of the three remnants is extensive (46-95%) and pollen dispersal has two components. The first is very localized and restricted to tens of meters around the mother trees. The second is a long-distance component with dispersal occurring over several kilometers. Effective dispersal distances, accounting for the distance and directionality to mother trees of sampled pollen donors, average 328 m and are greater than values reported for a continuous population. These results suggest that the opening of the landscape facilitates airborne pollen movement and may alleviate the expected detrimental genetic effects of fragmentation.
Resumo:
Although the functional consequences of temperature variation have been examined for a wide range of whole-animal performance traits, the implications of thermal variation for reproductive behaviour or performance are poorly known. I examined the acute effects of temperature on the mating behaviour and swimming performance of male eastern mosquitofish, Gambusia holbrooki, which rely on a coercive strategy to obtain matings and are routinely exposed to wide daily temperature fluctuations. Males showed reproductive behaviours across the entire test temperature range of 14-38 degrees C, representing one of the widest reproductively active temperature ranges for any ectotherm. Both the time spent in pursuit of females and the total number of mating attempts increased with temperature to a plateau that started at approximately 22-26 degrees C. However, males maintained a constant level of copulations at 18-34 degrees C, the temperature range they routinely experience in southeast Queensland. In contrast, maximum swimming performance and approach speeds during copulations were highly thermally dependent across this temperature range. Thus, acute temperature variation has important fitness implications for male G. holbrooki, but mating performance was significantly limited only at extreme temperatures. (c) 2005 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among- population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by- product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.
Resumo:
Background Non-random mating affects population variation for substance use and dependence. Developmentally, mate selection leading to positive spousal correlations for genetic similarity may result in increased risk for substance use and misuse in offspring. Mate selection varies by cohort and thus, assortative mating in one generation may produce marked changes in rates of substance use in the next. We aim to clarify the mechanisms contributing to spousal similarity for cigarette smoking and alcohol consumption. Methods Using data from female twins and their male spouses, we fit univariate and bivariate twin models to examine the contribution of primary assortative mating and reciprocal marital interaction to spousal resemblance for regular cigarette smoking and nicotine dependence, and for regular alcohol use and alcohol dependence. Results We found that assortative mating significantly influenced regular smoking, regular alcohol use, nicotine dependence and alcohol dependence. The bivariate models for cigarette smoking and alcohol consumption also highlighted the importance of primary assortative mating on all stages of cigarette smoking and alcohol consumption, with additional evidence for assortative mating across the two stages of alcohol consumption. Conclusions Women who regularly used, and subsequently were dependent on cigarettes or alcohol were more likely to marry men with similar behaviors. After mate selection had occurred, one partner's cigarette or alcohol involvement did not significantly modify the other partner's involvement with these psychoactive substances.
Resumo:
Recent studies have demonstrated male mate choice for female ornaments in species without sex-role reversal. Despite these empirical findings, little is known about the adaptive dynamics of female signalling, in particular the evolution of male mating preferences. The evolution of traits that signal mate quality is more complex in females than in males because females usually provide the bulk of resources for the developing offspring. Here, we investigate the evolution of male mating preferences using a mathematical model which: (i) specifically accounts for the fact that females must trade-off resources invested in ornaments with reproduction; and (ii) allows male mating preferences to evolve a non-directional shape. The optimal adaptive strategy for males is to develop stabilizing mating preferences for female display traits to avoid females that either invests too many or too few resources in ornamentation. However, the evolutionary stability of this prediction is dependent upon the level of error made by females when allocating resources to either signal or fecundity.
Resumo:
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.
Resumo:
We measured plasma androgen (combined testosterone and 5 alpha-dihydrotestosterone) (A) and corticosterone (B) in the promiscuous green turtle (Chelonia mydas) during courtship in the southern Great Barrier Reef. This study examined if reproductive behaviors and intermale aggression induced behavioral androgen and adrenocortical responses in reproductively active male and female green turtles. Associations between reproductive behavior and plasma steroids were investigated in green turtles across the population and within individuals. Levels across a range of both asocial and social behaviors were compared including (a) free swimming behavior; (b) initial courtship interactions; (c) mounted behavior (male and female turtles involved in copulatory activities); (d) intermale aggression (rival males that physically competed with another male turtle or mounted males recipient to these aggressive interactions); and (e) extensive courtship damage (male turtles that had accumulated excessive courtship damage from rival males). Behavioral androgen responses were detected in male turtles, in that plasma A was observed to increase with both attendant and mounted behavior. Male turtles who had been subjected to intermale aggression or who had accumulated severe courtship damage exhibited significantly lower plasma A than their respective controls. No pronounced adrenocortical response was observed after either intermale aggression or accumulation of extensive courtship damage. Female turtles exhibited a significant increase in plasma B during swimming versus mounted behavior, but no change in plasma A. We discuss our results in terms of how scramble polygamy might influence behavioral androgen interactions differently from more typical combative and territorial forms Of male polygamy. (C) 1999 Academic Press.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62M05