942 resultados para lung neoplasms
Resumo:
Purpose Endotracheal suctioning causes significant lung derecruitment. Closed suction (CS) minimizes lung volume loss during suction, and therefore, volumes are presumed to recover more quickly postsuctioning. Conflicting evidence exists regarding this. We examined the effects of open suction (OS) and CS on lung volume loss during suctioning, and recovery of end-expiratory lung volume (EELV) up to 30 minutes postsuction. Material and Methods Randomized crossover study examining 20 patients postcardiac surgery. CS and OS were performed in random order, 30 minutes apart. Lung impedance was measured during suction, and end-expiratory lung impedance was measured at baseline and postsuctioning using electrical impedance tomography. Oximetry, partial pressure of oxygen in the alveoli/fraction of inspired oxygen ratio and compliance were collected. Results Reductions in lung impedance during suctioning were less for CS than for OS (mean difference, − 905 impedance units; 95% confidence interval [CI], − 1234 to –587; P < .001). However, at all points postsuctioning, EELV recovered more slowly after CS than after OS. There were no statistically significant differences in the other respiratory parameters. Conclusions Closed suctioning minimized lung volume loss during suctioning but, counterintuitively, resulted in slower recovery of EELV postsuction compared with OS. Therefore, the use of CS cannot be assumed to be protective of lung volumes postsuctioning. Consideration should be given to restoring EELV after either suction method via a recruitment maneuver.
Resumo:
Circulating tumour cells (CTCs) have attracted much recent interest in cancer research as a potential biomarker and as a means of studying the process of metastasis. It has long been understood that metastasis is a hallmark of malignancy, and conceptual theories on the basis of metastasis from the nineteenth century foretold the existence of a tumour "seed" which is capable of establishing discrete tumours in the "soil" of distant organs. This prescient "seed and soil" hypothesis accurately predicted the existence of CTCs; microscopic tumour fragments in the blood, at least some of which are capable of forming metastases. However, it is only in recent years that reliable, reproducible methods of CTC detection and analysis have been developed. To date, the majority of studies have employed the CellSearch™ system (Veridex LLC), which is an immunomagnetic purification method. Other promising techniques include microfluidic filters, isolation of tumour cells by size using microporous polycarbonate filters and flow cytometry-based approaches. While many challenges still exist, the detection of CTCs in blood is becoming increasingly feasible, giving rise to some tantalizing questions about the use of CTCs as a potential biomarker. CTC enumeration has been used to guide prognosis in patients with metastatic disease, and to act as a surrogate marker for disease response during therapy. Other possible uses for CTC detection include prognostication in early stage patients, identifying patients requiring adjuvant therapy, or in surveillance, for the detection of relapsing disease. Another exciting possible use for CTC detection assays is the molecular and genetic characterization of CTCs to act as a "liquid biopsy" representative of the primary tumour. Indeed it has already been demonstrated that it is possible to detect HER2, KRAS and EGFR mutation status in breast, colon and lung cancer CTCs respectively. In the course of this review, we shall discuss the biology of CTCs and their role in metastagenesis, the most commonly used techniques for their detection and the evidence to date of their clinical utility, with particular reference to lung cancer.
Resumo:
Introduction: Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods: An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results: Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion: Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer. © 2013 Barr et al.
Resumo:
The cancer stem-cell (CSC) hypothesis suggests that there is a small subset of cancer cells that are responsible for tumor initiation and growth, possessing properties such as indefinite self-renewal, slow replication, intrinsic resistance to chemotherapy and radiotherapy, and an ability to give rise to differentiated progeny. Through the use of xenotransplantation assays, putative CSCs have been identified in many cancers, often identified by markers usually expressed in normal stem cells. This is also the case in lung cancer, and the accumulated data on side population cells, CD133, CD166, CD44 and ALDH1 are beginning to clarify the true phenotype of the lung cancer stem cell. Furthermore, it is now clear that many of the pathways of normal stem cells, which guide cellular proliferation, differentiation, and apoptosis are also prominent in CSCs; the Hedgehog (Hh), Notch, and Wnt signaling pathways being notable examples. The CSC hypothesis suggests that there is a small reservoir of cells within the tumor, which are resistant to many standard therapies, and can give rise to new tumors in the form of metastases or relapses after apparent tumor regression. Therapeutic interventions that target CSC pathways are still in their infancy and clinical data of their efficacy remain limited. However Smoothened inhibitors, gamma-secretase inhibitors, anti-DLL4 antagonists, Wnt antagonists, and CBP/β-catenin inhibitors have all shown promising anticancer effects in early studies. The evidence to support the emerging picture of a lung cancer CSC phenotype and the development of novel therapeutic strategies to target CSCs are described in this review.
Resumo:
An important function of clinical cancer registries is to provide feedback to clinicians on various performance measures. To date, most clinical cancer registries in Australia are located in tertiary academic hospitals, where adherence to guidelines is probably already high. Microscopic confirmation is an important process measure for lung cancer care. We found that the proportion of patients with lung cancer without microscopic confirmation was much higher in regional public hospitals (27.1%) than in tertiary hospitals (7.5%), and this disparity remained after adjusting for age, sex and comorbidities. The percentage was also higher in the private than in the public sector. This case study shows that we need a population-based approach to measuring clinical indicators that includes regional public hospitals as a matter of priority and should ideally include the private sector.
Resumo:
Background: Bronchopulmonary dysplasia (BPD) is one of the most common complications after preterm birth and is associated with intrauterine exposure to bacteria. Transforming growth factor-β (TGFβ) is implicated in the development of BPD. Objectives: We hypothesized that different and/or multiple bacterial signals could elicit divergent TGFβ signaling responses in the developing lung. Methods: Time-mated pregnant Merino ewes received an intra-amniotic injection of lipopolysaccharide (LPS) and/or Ureaplasma parvum serovar 3 (UP) at 117 days' and/or 121/122 days' gestational age (GA). Controls received an equivalent injection of saline and or media. Lambs were euthanized at 124 days' GA (term = 150 days' GA). TGFβ1, TGFβ2, TGFβ3, TGFβ receptor (R)1 and TGFβR2 protein levels, Smad2 phosphorylation and elastin deposition were evaluated in lung tissue. Results: Total TGFβ1 and TGFβ2 decreased by 24 and 51% after combined UP+LPS exposure, whereas total TGFβ1 increased by 31% after 7 days' LPS exposure but not after double exposures. Alveolar expression of TGFβR2 decreased 75% after UP, but remained unaltered after double exposures. Decreased focal elastin deposition after single LPS exposure was prevented by double exposures. Conclusions: TGFβ signaling components and elastin responded differently to intrauterine LPS and UP exposure. Multiple bacterial exposures attenuated TGFβ signaling and normalized elastin deposition.
Resumo:
Background Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies. Methodology/Principal Findings Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects. Conclusions These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life.
Resumo:
Objective To determine stage-specific and average disability weights (DWs) of malignant neoplasm and provide support and evidence for study on burden of cancer and policy development in Shandong province. Methods Health status of each cancer patient identified during the cancer prevalence survey in Shandong, 2007 was investigated. In line with the GBD methodology in estimating DWs, the disability extent of every case was classified and evaluated according to the Six-class Disability Classification version and then the stage-specific weights and average DWs with their 95 % confidence intervals were calculated, using SAS software. Results A total of 11 757 cancer cases were investigated and evaluated. DWs of specific stage of therapy, remission, metastasis and terminal of all cancers were 0.310, 0.218, 0.450 and 0.653 respectively. The average DW of all cancers was 0.317(95 % CI:0.312-0.321). Weights of different stage and different cancer varied significantly, while no significant differences were found between males and females. DWs were found higher (>0.4) for liver cancer, bone cancer, lymphoma and pancreas cancer. Lower DWs (<0.3) were found for breast cancer, cervix uteri, corpus uteri, ovarian cancer, larynx cancer, mouth and oropharynx cancer. Conclusion Stage-specific and average DWs for various cancers were estimated based on a large sample size survey. The average DWs of 0.317 for all cancers indicated that 1/3 healthy year lost for each survived life year of them. The difference of DWs between different cancer and stage provide scientific evidence for cancer prevention strategy development. Abstract in Chinese 目的 测算各种恶性肿瘤的分病程残疾权重和平均残疾权重,为山东省恶性肿瘤疾病负担研究及肿瘤防治对策制定提供参考依据. 方法 在山东省2007年恶性肿瘤现患调查中对所有恶性肿瘤患者的健康状况进行调查,参考全球疾病负担研究的方法 ,利用六级社会功能分级标准对患者残疾状况进行分级和赋值,分别计算20种恶性肿瘤的分病程残疾权重和平均残疾权重及其95%CI. 结果 共调查恶性肿瘤患者11757例,所有恶性肿瘤治疗期、恢复期、转移期和晚期的残疾权重分别为0.310、0.218、0.450和0.653,平均残疾权重为0.317(95%CI:0.312~0.321).不同恶性肿瘤和不同病程阶段的残疾权重差别显著,性别间差异无统计学意义.肝癌、骨癌、淋巴瘤和胰腺癌平均残疾权重较高(>0.4),乳腺癌、子宫体癌、子宫颈癌、卵巢癌、喉癌和口咽部癌症相对较低(<0.3). 结论 山东省恶性肿瘤平均残疾权重为0.317,即恶性肿瘤患者每存活1年平均损失近1/3个健康生命年;不同恶性肿瘤和不同病程阶段的残疾权重差别为肿瘤防治对策的制定具有重要意义.
Resumo:
Background Recurrent protracted bacterial bronchitis (PBB), chronic suppurative lung disease (CSLD) and bronchiectasis are characterised by a chronic wet cough and are important causes of childhood respiratory morbidity globally. Haemophilus influenzae and Streptococcus pneumoniae are the most commonly associated pathogens. As respiratory exacerbations impair quality of life and may be associated with disease progression, we will determine if the novel 10-valent pneumococcal-Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) reduces exacerbations in these children. Methods A multi-centre, parallel group, double-blind, randomised controlled trial in tertiary paediatric centres from three Australian cities is planned. Two hundred six children aged 18 months to 14 years with recurrent PBB, CSLD or bronchiectasis will be randomised to receive either two doses of PHiD-CV or control meningococcal (ACYW(135)) conjugate vaccine 2 months apart and followed for 12 months after the second vaccine dose. Randomisation will be stratified by site, age (<6 years and >= 6 years) and aetiology (recurrent PBB or CSLD/bronchiectasis). Clinical histories, respiratory status (including spirometry in children aged >= 6 years), nasopharyngeal and saliva swabs, and serum will be collected at baseline and at 2, 3, 8 and 14 months post-enrolment. Local and systemic reactions will be recorded on daily diaries for 7 and 30 days, respectively, following each vaccine dose and serious adverse events monitored throughout the trial. Fortnightly, parental contact will help record respiratory exacerbations. The primary outcome is the incidence of respiratory exacerbations in the 12 months following the second vaccine dose. Secondary outcomes include: nasopharyngeal carriage of H. influenzae and S. pneumoniae vaccine and vaccine-related serotypes; systemic and mucosal immune responses to H. influenzae proteins and S. pneumoniae vaccine and vaccine-related serotypes; impact upon lung function in children aged >= 6 years; and vaccine safety. Discussion As H. influenzae is the most common bacterial pathogen associated with these chronic respiratory diseases in children, a novel pneumococcal conjugate vaccine that also impacts upon H. influenzae and helps prevent respiratory exacerbations would assist clinical management with potential short- and long-term health benefits. Our study will be the first to assess vaccine efficacy targeting H. influenzae in children with recurrent PBB, CSLD and bronchiectasis.
Resumo:
Objectives In Aboriginal and Torres Strait Islander peoples in Queensland, to (a) determine the disease burden of common chronic lung diseases and (b) identify areas of need with respect to lung health services. Methods Literature reviews and analyses of hospitalisation and mortality data were used to describe disease epidemiology and available programs and services. Key stakeholder interviews and an online survey of health professionals were used to evaluate lung health services across the state and to identify services, needs and gaps. Results Morbidity and mortality from respiratory diseases in the Indigenous population is substantially higher than the non-Indigenous population across all age groups and regions. There are inadequate clinical services and resources to address disease prevention, detection, intervention and management in an evidence-based and culturally acceptable fashion. There is a lack of culturally appropriate educational resources and management programs, insufficient access to appropriately engaged Indigenous health professionals, a lack of multi-disciplinary specialist outreach teams, fragmented information systems and inadequate coordination of care. Conclusions Major initiatives are required at all levels of the healthcare system to adequately address service provision for Indigenous Queenslanders with lung diseases, including high quality research to investigate the causes for poor lung health, which are likely to be multifactorial.
Resumo:
Background: Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and/or a survival factor in the disease. Methods: TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB 2) levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression. Results: TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB 2levels were increased in protein (p < 0.05) and plasma (p < 0.01) NSCLC samples respectively. TXS tissue expression was higher in adenocarcinoma (p < 0.001) and female patients (p < 0.05). No significant correlation with patient survival was observed. Selective TXS inhibition significantly reduced tumour cell growth and increased apoptosis, while TXS over-expression stimulated cell proliferation and invasiveness, and was protective against apoptosis. Conclusion: TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC. © 2011 Cathcart et al; licensee BioMed Central Ltd.
Resumo:
Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI2/TXA2 ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer. © 2010 Elsevier B.V. All rights reserved.