957 resultados para load-balancing scheduling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ICU is an integral part of any hospital and is under great load from patient arrivals as well as resource limitations. Scheduling of patients in the ICU is complicated by the two general types; elective surgery and emergency arrivals. This complicated situation is handled by creating a tentative initial schedule and then reacting to uncertain arrivals as they occur. For most hospitals there is little or no flexibility in the number of beds that are available for use now or in the future. We propose an integer programming model to handle a parallel machine reacting system for scheduled and unscheduled arrivals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current unbalance is a significant power quality problem in distribution networks. This problem increases further with the increased penetration of single-phase photovoltaic cells. In this paper, a new approach is developed for current unbalance reduction in medium voltage distribution networks. The method is based on utilization of three single-phase voltage source converters connected in delta configuration between the phases. Each converter is controlled to function as a varying capacitor. The combination of the load and the compensator will result in a balanced load with unity power factor. The efficacy of the proposed current unbalance reduction concept is verified through dynamic simulations in PSCAD/EMTDC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing integration of Renewable Energy Resources (RER) and the role of Electric Energy Storage (EES) in distribution systems has created interest in using energy management strategies. EES has become a suitable resource to manage energy consumption and generation in smart grid. Optimize scheduling of EES can also maximize retailer’s profit by introducing energy time-shift opportunities. This paper proposes a new strategy for scheduling EES in order to reduce the impact of electricity market price and load uncertainty on retailers’ profit. The proposed strategy optimizes the cost of purchasing energy with the objective of minimizing surplus energy cost in hedging contract. A case study is provided to demonstrate the impact of the proposed strategy on retailers’ financial benefit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a new load distribution strategy called `send-and-receive' for scheduling divisible loads, in a linear network of processors with communication delay. This strategy is designed to optimally utilize the network resources and thereby minimizes the processing time of entire processing load. A closed-form expression for optimal size of load fractions and processing time are derived when the processing load originates at processor located in boundary and interior of the network. A condition on processor and link speed is also derived to ensure that the processors are continuously engaged in load distributions. This paper also presents a parallel implementation of `digital watermarking problem' on a personal computer-based Pentium Linear Network (PLN) topology. Experiments are carried out to study the performance of the proposed strategy and results are compared with other strategies found in literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Batch Processing Machine (BPM) is one which processes a number of jobs simultaneously as a batch with common beginning and ending times. Also, a BPM, once started cannot be interrupted in between (Pre-emption not allowed). This research is motivated by a BPM in steel casting industry. There are three main stages in any steel casting industry viz., pre-casting stage, casting stage and post-casting stage. A quick overview of the entire process, is shown in Figure 1. There are two BPMs : (1) Melting furnace in the pre-casting stage and (2) Heat Treatment Furnace (HTF) in the post casting stage of steel casting manufacturing process. This study focuses on scheduling the latter, namely HTF. Heat-treatment operation is one of the most important stages of steel casting industries. It determines the final properties that enable components to perform under demanding service conditions such as large mechanical load, high temperature and anti-corrosive processing. In general, different types of castings have to undergo more than one type of heat-treatment operations, where the total heat-treatment processing times change. To have a better control, castings are primarily classified into a number of job-families based on the alloy type such as low-alloy castings and high alloy castings. For technical reasons such as type of alloy, temperature level and the expected combination of heat-treatment operations, the castings from different families can not be processed together in the same batch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of scheduling divisible loads in distributed computing systems, in presence of processor release time is considered. The objective is to find the optimal sequence of load distribution and the optimal load fractions assigned to each processor in the system such that the processing time of the entire processing load is a minimum. This is a difficult combinatorial optimization problem and hence genetic algorithms approach is presented for its solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of nets, called S-nets, is introduced for the performance analysis of scheduling algorithms used in real-time systems Deterministic timed Petri nets do not adequately model the scheduling of resources encountered in real-time systems, and need to be augmented with resource places and signal places, and a scheduler block, to facilitate the modeling of scheduling algorithms. The tokens are colored, and the transition firing rules are suitably modified. Further, the concept of transition folding is used, to get intuitively simple models of multiframe real-time systems. Two generic performance measures, called �load index� and �balance index,� which characterize the resource utilization and the uniformity of workload distribution, respectively, are defined. The utility of S-nets for evaluating heuristic-based scheduling schemes is illustrated by considering three heuristics for real-time scheduling. S-nets are useful in tuning the hardware configuration and the underlying scheduling policy, so that the system utilization is maximized, and the workload distribution among the computing resources is balanced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method to statically balance a general treestructured,planar revolute-joint linkage loaded with linear springs or constant forces without using auxiliary links. The balancing methods currently documented in the literature use extra links; some do not apply when there are spring loads and some are restricted to only two-link serial chains. In our method, we suitably combine any non-zero-free-length load spring with another spring to result in an effective zero-free-length spring load. If a link has a single joint (with the parent link), we give a procedure to attach extra zero-free-length springs to it so that forces and moments are balanced for the link. Another consequence of this attachment is that the constraint force of the joint on the parent link becomes equivalent to a zero-free-length spring load. Hence, conceptually,for the parent link, the joint with its child is removed and replaced with the zero-free-length spring. This feature allows recursive application of this procedure from the end-branches of the tree down to the root, satisfying force and moment balance of all the links in the process. Furthermore, this method can easily be extended to the closed-loop revolute-joint linkages, which is also illustrated in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads such as air conditioners, dish washers, and electric vehicles will also participate in the coming years. The electricity consumption of these smaller loads, which we call deferrable loads, can be shifted over time, and thus be used (in aggregate) to compensate for the random fluctuations in renewable generation.

In this thesis, we propose a real-time distributed deferrable load control algorithm to reduce the variance of aggregate load (load minus renewable generation) by shifting the power consumption of deferrable loads to periods with high renewable generation. The algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes the expected variance to go with updated predictions. We prove that suboptimality of this model predictive algorithm vanishes as time horizon expands in the average case analysis. Further, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance. Finally, we evaluate the algorithm via trace-based simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally, adjustment of gravity equilibrator to a new payload requires energy, e.g. to increase the pre-load of the balancing spring. A novel way of energy-free adjustment of gravity equilibrators is possible by introducing the concept of a storage spring. The storage spring supplies or stores the energy necessary to adjust the balancer spring of the gravity equilibrator. In essence the storage spring mechanism maintains a constant potential energy within the spring mechanism; energy is exchanged between the storage and balancer spring when needed. Various conceptual designs using both zero-free-length springs and regular extension springs are proposed. Two models were manufactured demonstrating the practical embodiments and functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of task assignment in a distributed system (such as a distributed Web server) in which task sizes are drawn from a heavy-tailed distribution. Many task assignment algorithms are based on the heuristic that balancing the load at the server hosts will result in optimal performance. We show this conventional wisdom is less true when the task size distribution is heavy-tailed (as is the case for Web file sizes). We introduce a new task assignment policy, called Size Interval Task Assignment with Variable Load (SITA-V). SITA-V purposely operates the server hosts at different loads, and directs smaller tasks to the lighter-loaded hosts. The result is that SITA-V provably decreases the mean task slowdown by significant factors (up to 1000 or more) where the more heavy-tailed the workload, the greater the improvement factor. We evaluate the tradeoff between improvement in slowdown and increase in waiting time in a system using SITA-V, and show conditions under which SITA-V represents a particularly appealing policy. We conclude with a discussion of the use of SITA-V in a distributed Web server, and show that it is attractive because it has a simple implementation which requires no communication from the server hosts back to the task router.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under high loads, a Web server may be servicing many hundreds of connections concurrently. In traditional Web servers, the question of the order in which concurrent connections are serviced has been left to the operating system. In this paper we ask whether servers might provide better service by using non-traditional service ordering. In particular, for the case when a Web server is serving static files, we examine the costs and benefits of a policy that gives preferential service to short connections. We start by assessing the scheduling behavior of a commonly used server (Apache running on Linux) with respect to connection size and show that it does not appear to provide preferential service to short connections. We then examine the potential performance improvements of a policy that does favor short connections (shortest-connection-first). We show that mean response time can be improved by factors of four or five under shortest-connection-first, as compared to an (Apache-like) size-independent policy. Finally we assess the costs of shortest-connection-first scheduling in terms of unfairness (i.e., the degree to which long connections suffer). We show that under shortest-connection-first scheduling, long connections pay very little penalty. This surprising result can be understood as a consequence of heavy-tailed Web server workloads, in which most connections are small, but most server load is due to the few large connections. We support this explanation using analysis.