795 resultados para live projects
Resumo:
Power Fund Awarded Projects from the Office of Energy Independence.
Resumo:
Power Fund Awarded Projects from the Office of Energy Independence.
Resumo:
Highway Research Project HR-392 was undertaken to evaluate cold in-place asphalt recycled (CIR) projects in the State of Iowa. The research involved assessment of performance levels, investigation of factors that most influence pavement performance and economy, and development of guidelines for CIR project selection. The performance was evaluated in two ways: Pavement Condition Indices (PCI, U.S. Corps of Engineers) were calculated and overall ratings were given on ride and appearance. A regression analysis was extrapolated to predict the future service life of CIR roads. The results were that CIR roads within the State of Iowa, with less than 2000 annual average daily traffic (AADT), have an average predicted service life of fifteen to twenty-six years. Subgrade stability problems can prevent a CIR project from being successfully constructed. A series of Dynamic Cone Penetrometer (DCP) tests were conducted on a CIR project that experienced varying levels of subgrade failure during construction. Based on this case study, and supporting data, it was determined that the DCP test can be used to evaluate subgrades that have insufficient stability for recycling. Overall, CIR roads in Iowa are performing well. It appears that the development of transverse cracking has been retarded and little rutting has occurred. Contracting agencies must pay special attention to the subgrade conditions during project selection. Because of its performance, CIR is a recommended method to be considered for rehabilitating aged low volume (<2000 AADT) asphalt concrete roads in Iowa.
Resumo:
The Iowa Department of Transportation (IDOT) has been requiring Critical Path Method (CPM) schedules on some larger or more schedule sensitive projects. The Office of Construction's expectations for enhanced project control and improved communication of project objectives have not been fully met by the use of CPM. Recognizing that the current procedures might not be adequate for all projects, IDOT sponsored a research project to explore the state-of-the-art in transportation scheduling and identify opportunities for improvement. The first phase of this project identified a technique known as the Linear Scheduling Method (LSM) as an alternative to CPM on certain highway construction projects. LSM graphically displays the construction process with respect to the location and the time in which each activity occurs. The current phase of this project was implemented to allow the research team the opportunity to evaluate LSM on all small groups of diverse projects. Unlike the first phase of the project, the research team was closely involved in the project from early in the planning phase throughout the completion of the projects. The research strongly suggests that the linear scheduling technique has great potential as a project management tool for both contractors and IDOT personnel. However, before this technique can become a viable weapon in the project management arsenal, a software application needs to be developed. This application should bring to linear scheduling a degree of functionality as rich and as comprehensive as that found in microcomputer based CPM software on the market today. The research team recommends that the IDOT extend this research effort to include the development of a linear scheduling application.
Resumo:
Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.
Resumo:
This report contains findings on 52 lake restoration projects. It summarizes the interpretation of the detailed project reports, maps, and cost estimates.
Resumo:
In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improving work-zone flow-through merge points depends on the behavior of individual drivers. By better understanding driver behavior, traffic control plans, work zone policies, and countermeasures can be better targeted to reinforce desirable lane closure merging behavior, leading to both improved safety and work-zone capacity. The researchers collected data for two work-zone scenarios that included lane drops with one scenario on the Interstate and the other on an urban arterial roadway. The researchers then modeled and calibrated these scenarios in VISSIM using real-world speeds, travel times, queue lengths, and merging behaviors (percentage of vehicles merging upstream and near the merge point). Once built and calibrated, the researchers modeled strategies for various countermeasures in the two work zones. The models were then used to test and evaluate how various merging strategies affect safety and operations at the merge areas in these two work zones.
Resumo:
This report describes the measurement of dynamic (live load) deflections in a 240' x 30' three span continuous prestressed steel bridge, skewed 30 degrees. The design assumptions and prestressing procedure are described briefly, and the instrumentation and loading are discussed. The actual deflections are presented in tabular form, and the deflections due to the design live load are calculated. The maximum deflections are presented as a ratio of the span length, and the further use of prestressed steel beams is recommended.
Resumo:
The use of Railroad Flatcars (RRFCs) as the superstructure on low-volume county bridges has been investigated in a research project conducted by the Bridge Engineering Center at Iowa State University. These bridges enable county engineers to replace old, inadequate county bridge superstructures for less than half the cost and in a shorter construction time than required for a conventional bridge. To illustrate their constructability, adequacy, and economy, two RRFC demonstration bridges were designed, constructed, and tested: one in Buchanan County and the other in Winnebago County. The Buchanan County Bridge was constructed as a single span with 56-ft-long flatcars supported at their ends by new, concrete abutments. The use of concrete in the substructure allowed for an integral abutment at one end of the bridge with an expansion joint at the other end. Reinforced concrete beams (serving as longitudinal connections between the three adjacent flatcars) were installed to distribute live loads among the RRFCs. Guardrails and an asphalt milling driving surface completed the bridge. The Winnebago County Bridge was constructed using 89-ft-long flatcars. Preliminary calculations determined that they were not adequate to span 89 ft as a simple span. Therefore, the flatcars were supported by new, steel-capped piers and abutments at the RRFCs' bolsters and ends, resulting in a 66-ft main span and two 10-ft end spans. Due to the RRFC geometry, the longitudinal connections between adjacent RRFCs were inadequate to support significant loads; therefore, transverse, recycled timber planks were utilized to effectively distribute live loads to all three RRFCs. A gravel driving surface was placed on top of the timber planks, and a guardrail system was installed to complete the bridge. Bridge behavior predicted by grillage models for each bridge was validated by strain and deflection data from field tests; it was found that the engineered RRFC bridges have live load stresses significantly below the AASHTO Bridge Design Specification limits. To assist in future RRFC bridge projects, RRFC selection criteria were established for visual inspection and selection of structurally adequate RRFCs. In addition, design recommendations have been developed to simplify live load distribution calculations for the design of the bridges. Based on the results of this research, it has been determined that through proper RRFC selection, construction, and engineering, RRFC bridges are a viable, economic replacement system for low-volume road bridges.
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
With an ever increasing desire to utilize accelerated bridge construction (ABC) techniques, it is becoming critical that bridge designers and contractors have confidence in typical details. The Keg Creek Bridge on US 6 in Iowa was a recent ABC example that utilized connection details that had been utilized elsewhere. The connection details used between the drilled shaft and pier column and between the pier column and the pier cap were details needing evaluation. These connection details utilized grouted couplers that have been tested by others with mixed results—some indicating quality performance and others indicating questionable performance. There was a need to test these couplers to gain an understanding of their performance in likely Iowa details and to understand how their performance might be impacted by different construction processes. The objective of the work was to perform laboratory testing and evaluation of the grouted coupler connection details utilized on precast concrete elements for the Keg Creek Bridge. The Bridge Engineering Center (BEC), with the assistance of the Iowa Department of Transportation (DOT) Office of Bridges and Structures, developed specimens representative of the Keg Creek Bridge connections for testing under static and fatigue loads in the structures laboratory. The specimens were also evaluated for their ability to resist the intrusion of water and chlorides. Evaluation of their performance was made through comparisons with design assumptions and previous research, as well as the physical performance of the coupled connections.