982 resultados para lipopolysaccharide-induced fever


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of eukaryotic cells to extracellular stimuli results in activation of mitogen-activated protein kinase (MAPK) cascades composed of MAPKs, MAPK kinases (MAP2Ks), and MAPK kinase kinases (MAP3Ks). Mammals possess a large number of MAP3Ks, many of which can activate the c-Jun N-terminal kinase (JNK) MAPK cascade when overexpressed, but whose biological function is poorly understood. We examined the function of the MAP3K MEK kinase 1 (MEKK1) in proinflammatory signaling. Using MEKK1-deficient embryonic stem cells prepared by gene targeting, we find that, in addition to its function in JNK activation by growth factors, MEKK1 is required for JNK activation by diverse proinflammatory stimuli, including tumor necrosis factor α, IL-1, double-stranded RNA, and lipopolysaccharide. MEKK1 is also essential for induction of embryonic stem cell migration by serum factors, but is not required for activation of other MAPKs or the IκB kinase signaling cascade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cleavage of membrane-associated proteins with the release of biologically active macromolecules is an emerging theme in biology. However, little is known about the nature and regulation of the involved proteases or about the physiological inducers of the shedding process. We here report that rapid and massive shedding of the interleukin 6 receptor (IL-6R) and the lipopolysaccharide receptor (CD14) occurs from primary and transfected cells attacked by two prototypes of pore-forming bacterial toxins, streptolysin O and Escherichia coli hemolysin. Shedding is not induced by an streptolysin O toxin mutant which retains cell binding capacity but lacks pore-forming activity. The toxin-dependent cleavage site of the IL-6R was mapped to a position close to, but distinct from, that observed after stimulation with phorbol myristate acetate. Soluble IL-6R that was shed from toxin-treated cells bound its ligand and induced an IL-6-specific signal in cells that primarily lacked the IL-6R. Transsignaling by soluble IL-6R and soluble CD14 is known to dramatically broaden the spectrum of host cells for IL-6 and lipopolysaccharide, and is thus an important mechanism underlying their systemic inflammatory effects. Our findings uncover a novel mechanism that can help to explain the long-range detrimental action of pore-forming toxins in the host organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of macrophages by bacterial lipopolysaccharide (LPS) induces transcription of genes that encode for proinflammatory regulators of the immune response. Previous work has suggested that activation of the transcription factor activator protein 1 (AP-1) is one LPS-induced event that mediates this response. Consistent with this notion, we found that LPS stimulated AP-1-mediated transcription of a transfected reporter gene in the murine macrophage cell line RAW 264.7. As AP-1 activity is regulated in part by activation of the c-Jun N-terminal kinase (JNK), which phosphorylates and subsequently increases the transcriptional activity of c-Jun, we examined whether LPS treatment of macrophages resulted in activation of this kinase. LPS treatment of RAW 264.7 cells, murine bone marrow-derived macrophages, and the human monocyte cell line THP-1 resulted in rapid activation of the p46 and p54 isoforms of JNK. Treatment with wild-type and rough mutant forms of LPS and synthetic lipid A resulted in JNK activation, while pretreatment with the tyrosine kinase inhibitor herbimycin A inhibited this response. Binding of LPS-LPS binding protein (LBP) complexes to CD14, a surface receptor that mediates many LPS responses, was found to be crucial, as pretreatment of THP-1 cells with the monoclonal antibody 60b, which blocks this binding, inhibited JNK activation. These results suggest that LPS activation of JNK in monocyte/macrophage cells is a CD14- and protein tyrosine phosphorylation-dependent event that may mediate the early activation of AP-1 in regulating LPS-triggered gene induction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Septic shock is a cytokine-mediated process typically caused by a severe underlying infection. Toxins generated by the infecting organism trigger a cascade of events leading to hypotension, to multiple organ system failure, and frequently to death. Beyond supportive care, no effective therapy is available for the treatment of septic shock. Nitric oxide (NO) is a potent vasodilator generated late in the sepsis pathway leading to hypotension; therefore, NO represents a potential target for therapy. We have previously demonstrated that transforming growth factor (TGF) beta1 inhibits inducible NO synthase (iNOS) mRNA and NO production in vascular smooth muscle cells after its induction by cytokines critical in the sepsis cascade. Thus, we hypothesized that TGF-beta1 may inhibit iNOS gene expression in vivo and be beneficial in the treatment of septic shock. In a conscious rat model of septic shock produced by Salmonella typhosa lipopolysaccharide (LPS), TGF-beta1 markedly reduced iNOS mRNA and protein levels in several organs. In contrast, TGF-beta1 did not decrease endothelium-derived constitutive NOS mRNA in organs of rats receiving LPS. We also performed studies in anesthetized rats to evaluate the effect of TGF-beta1 on the hemodynamic compromise of septic shock; after an initial 25% decrease in mean arterial pressure, TGF-beta1 arrested LPS-induced hypotension and decreased mortality. A decrease in iNOS mRNA and protein levels in vascular smooth muscle cells was demonstrated by in situ hybridization and NADPH diaphorase staining in rats treated with TGF-beta1. Thus these studies suggest that TGF-beta1 inhibits iNOS in vivo and that TGF-beta1 may be of future benefit in the therapy of septic shock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Levels and subcellular distribution of connexin 43 (Cx43), a gap junction protein, were studied in hamster leukocytes before and after activation with endotoxin (lipopolysaccharide, LPS) both in vitro and in vivo. Untreated leukocytes did not express Cx43. However, Cx43 was clearly detectable by indirect immunofluorescence in cells treated in vitro with LPS (1 micrograms/ml, 3 hr). Cx43 was also detected in leukocytes obtained from the peritoneal cavity 5-7 days after LPS-induced inflammation. In some leukocytes that formed clusters Cx43 immunoreactivity was present at appositional membranes, suggesting formation of homotypic gap junctions. In cell homogenates of activated peritoneal macrophages, Cx43, detected by Western blot analysis, was mostly unphosphorylated. A second in vivo inflammatory condition studied was that induced by ischemia-reperfusion of the hamster cheek pouch. In this system, leukocytes that adhered to venular endothelial cells after 1 hr of ischemia, followed by 1 hr of reperfusion, expressed Cx43. Electron microscope observations revealed small close appositions, putative gap junctions, at leukocyte-endothelial cell and leukocyte-leukocyte contacts. These results indicate that the expression of Cx43 can be induced in leukocytes during an inflammatory response which might allow for heterotypic or homotypic intercellular gap junctional communication. Gap junctions may play a role in leukocyte extravasation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report that promoters for two murine acute-phase protein (APP) genes, complement factor 3 (C3) and serum amyloid A3 (SAA3), can increase recombinant protein expression in response to inflammatory stimuli in vivo. To deliver APP promoter-luciferase reporter gene constructs to the liver, where most endogenous APP synthesis occurs, we introduced them into a nonreplicating adenovirus vector and injected the purified viruses intravenously into mice. When compared with the low levels of basal luciferase expression observed prior to inflammatory challenge, markedly increased expression from the C3 promoter was detected in liver in response to both lipopolysaccharide (LPS) and turpentine, and lower-level inducible expression was also found in lung. In contrast, expression from the SAA3 promoter was found only in liver and was much more responsive to LPS than to turpentine. After LPS challenge, hepatic luciferase expression increased rapidly and in proportion to the LPS dose. Use of cytokine-inducible promoters in gene transfer vectors may make it possible to produce antiinflammatory proteins in vivo in direct relationship to the intensity and duration of an individual's inflammatory response. By providing endogenously controlled production of recombinant antiinflammatory proteins, this approach might limit the severity of the inflammatory response without interfering with the beneficial components of host defense and immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or N-G-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutrophilic lung inflammation is an essential component of host defense against diverse eukaryotic and prokaryotic pathogens, but in chronic inflammatory lung diseases, such as chronic obstructive lung disease (COPD), severe asthma, cystic fibrosis, and bronchiolitis, it may damage the host. Glucocorticosteroids are widely used in these conditions and in their infectious exacerbations; however, the clinical efficacy of steroids is disputed. In this study, we used a proteomic approach to identify molecules contributing to neutrophilic inflammation induced by transnasal administration of lipopolysaccharide (LPS) that were also resistant to the potent glucocorticosteroid dexamethasone (Dex). We confirmed that Dex was biologically active at both the transcript (suppression of GM-CSF and TNFalpha transcripts) and protein levels (induction of lipocortin) and used 2D-PAGE/MALDI-TOF to generate global expression profiles, identifying six LPS-induced proteins that were Dex resistant. Of these, S100A8, a candidate neutrophil chemotactic factor, was profiled in detail. Steroid refractory S100A8 expression was highly abundant, transcriptionally regulated, secreted into lung lavage fluid and immunohistochemically localized to tissue infiltrating neutrophils. However, in marked contrast to other vascular beds, neutralizing antibodies to S100A8 had only a weak anti-neutrophil recruitment effect and antibodies against the related S100A9 were ineffective. These data highlight the need for extensive in vivo profiling of proteomically identified candidate molecules and demonstrates that S100A8, despite its abundance, resistance to steroids and known chemotactic activity, is unlikely to be an important determinant of LPS-induced neutrophilic lung inflammation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 34-year-old female patient with a three year history of generalized granuloma annulare was treated systemically with dapsone (DADPS). Six weeks after the onset of treatment, the patient developed an extensive tonsillitis of the base of the tongue with fever and malaise. Routine laboratory work showed a leukocytopenia with agranulocytosis. Further investigation revealed a marked decrease of the enzyme activity of N-acetyltransferase 2, which plays an important role in dapsone metabolism. Treatment included the cessation of dapsone, antibiotic coverage, and G-CSF leading to the rapid improvement of symptoms and normalization of leukocyte counts. Dapsone-induced angina agranulocytotica is a rare event and is interpreted as an idiosyncratic reaction. Depending on genetic polymorphisms of various enzymes, dapsone can be metabolized to immunologically or toxicologically relevant intermediates. Because of the risk of severe hematologic reactions, dapsone should only be employed for solid indications and with appropriate monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Multiple low doses of streptozotocin (MSZ) treatment successfully induced diabetes in male TO, MFI and HO lean mice. In contrast however, BALB/c mice failed to develop persistent hyperglycaemia. Single streptozotocin (SSZ) treatment also produced diabetes in TO mice. SSZ treatment however, produced severe weight loss and atrophy of the lymphoid organs. MSZ treatment on the other hand, was not cytotoxic towards lymphoid organs and, whilst there was no loss of body weight, growth rates were reduced in MSZ treated mice. 2. Following sheep red blood cell (SRBC) immunisation of MSZ-treated mice, haemagglutination titres, and numbers of antigen reactive cells and plaque forming cells were all significantly lower than control values. 3. In vitro proliferation of spleen cells in response to phytohaemagglutinin (PHA) and conconavalin A (ConA) was found to be significantly depressed in MSZ treated mice. However, T-lymphocyte responses were intact when the mice were not overtly hyperglycaemic. In contrast, however, T cell independent responses to lipopolysaccharide (LPS) were generally intact throughout the study period. 4. Cell mediated immunity, as assessed by measurements of delayed (Type IV) hypersensitivity, was also depressed in MSZ treated mice. This suppression could be reversed by insulin therapy. 5. Both natural killer cell activity and antibody dependent cell mediated cytotoxicity were found to be significantly increased in MSZ treated mice. 6. Histological examination of the pancreas showed the presence of insulitis, in MSZ treated mice, and cytotoxic effector cells against obese mice islet cells (as assessed by 51Cr release) and HIT-T15 cells (as assessed by insulin secretion) were found to be significantly increased. Furthermore, these effector cells were also found to show increased proliferation in the presence of homogenates prepared from HIT-T15 cells. Examination of the Sera from MSZ treated mice showed that islet cell surface antibodies were present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolysis-inducing factor (PIF) induces muscle loss in cancer cachexia through a high affinity membrane bound receptor. This study investigates the mechanism by which the PIF receptor communicates to intracellular signalling pathways. C2C12 murine myoblasts were used as a model using PIF purified from MAC16 tumours. Calcium imaging was determined using fura-4-acetoxymethyl ester (Fura-4-AM). PIF induced a rapid rise in Ca2 +i, which was completely attenuated by a anti-receptor antibody, or peptides representing 20 mers of the N-terminus of the PIF receptor. Other agents catabolic for skeletal muscle including angiotensin II (AngII) tumour necrosis factor-a (TNF-a) and lipopolysaccharide (LPS) also induced a rise in Ca2 +i, but this was not attenuated by anti-PIF-receptor antibody. The rise in Ca2 +i induced by PIF and AngII was completely attenuated by the Zn2 + chelator D-myo-inositol-1,2,6-triphosphate, and this was reversed by administration of exogenous Zn2 +. The Ca2 +i rise induced by PIF was independent of the presence of extracellular Ca2 +, and attenuated by the Ca2 + pump inhibitor thapsigargin, suggesting that the Ca2 +i rise was due to release from intracellular stores. This rise in Ca2 +i induced by PIF was attenuated by both the phospholipase C inhibitor U73122 and 2-APB, an inhibitor of the inositol 1,4,5-triphosphate receptor, suggesting the involvement of a G-protein. Binding of the PIF to its receptor in skeletal muscle triggers a rise in Ca2 +i, which initiates a signalling cascade leading to a depression in protein synthesis, and an increase in protein degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme-oxygenases (HOs) catalyze the conversion of heme into carbon monoxide and biliverdin. HO-1 is induced during hypoxia, ischemia/reperfusion, and inflammation, providing cytoprotection and inhibiting leukocyte migration to inflammatory sites. Although in vitro studies have suggested an additional role for HO-1 in angiogenesis, the relevance of this in vivo remains unknown. We investigated the involvement of HO-1 in angiogenesis in vitro and in vivo. Vascular endothelial growth factor (VEGF) induced prolonged HO-1 expression and activity in human endothelial cells and HO-1 inhibition abrogated VEGF-driven angiogenesis. Two murine models of angiogenesis were used: (1) angiogenesis initiated by addition of VEGF to Matrigel and (2) a lipopolysaccharide (LPS)-induced model of inflammatory angiogenesis in which angiogenesis is secondary to leukocyte invasion. Pharmacologic inhibition of HO-1 induced marked leukocytic infiltration that enhanced VEGF-induced angiogenesis. However, in the presence of an anti-CD18 monoclonal antibody (mAb) to block leukocyte migration, VEGF-induced angiogenesis was significantly inhibited by HO-1 antagonists. Furthermore, in the LPS-induced model of inflammatory angiogenesis, induction of HO-1 with cobalt protoporphyrin significantly inhibited leukocyte invasion into LPS-conditioned Matrigel and thus prevented the subsequent angiogenesis. We therefore propose that during chronic inflammation HO-1 has 2 roles: first, an anti-inflammatory action inhibiting leukocyte infiltration; and second, promotion of VEGF-driven noninflammatory angiogenesis that facilitates tissue repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malignant Catarrhal Fever (MCF), an often-lethal infectious disease, presents as a variable complex of lesions in susceptible ungulate species. The disease is caused by a -herpesvirus following transmission from an inapparent carrier host. Two major epidemiological forms exist: wildebeest-associated MCF (WA-MCF), in which the virus is transmitted to susceptible species by wildebeest calves less than approximately four months of age, and sheepassociated MCF (SA-MCF) in which the virus is spread by sheep (primarily adolescents). Due to the lack of an in-vitro propagation system for the causative agent of the more economically significant SA-MCF, and with the expectation that cross-protective immunity may be provided, vaccine development has focused on the more easily propagated alcelaphine herpesvirus-1 (AlHV-1) that causes WA-MCF. In 2008 a direct viral challenge trial showed that a novel vaccine, employing an attenuated AlHV-1 (atAlHV-1) `C5000 virus strain, protected British Friesian-Holstein (FH) cattle against an intranasal challenge with virulent AlHV-1 `C5000 virus. For cattle keeping people living near wildebeest calving areas in sub-Saharan Africa an effective vaccine would have value as it would release them from the costly annual disease avoidance strategy of having to move their herds away from the oncoming wildebeest. On the other hand, an effective vaccine will release herd owners from the need to avoid MCF, allowing them to graze their cattle alongside wildebeest on the highly nutritious pastures of the calving areas. As such conservationists have raised concerns that the development of a vaccine might lead to detrimental grazing competition. The principle objective of this study was to test the novel vaccine on Tanzanian shorthorn zebu cross cattle (SZC).We did this firstly using a natural challenge field trial (Chapter Two) which demonstrated that immunisation with the atAlHV-1 vaccine was well tolerated and induced an oro-nasopharyngeal AlHV-1-specific and -neutralising antibody response. This resulted in an immunity in SZC cattle that was partially protective and reduced naturally transmitted infection by 56%. We also demonstrated that non-fatal infections occurred with a much higher frequency than previously thought. Because the calculated efficacy of the vaccine was less than that seen in British FH cattle we wanted to determine whether host factors, particular to SZC cattle, had impacted the outcomes of the field trial. To do this we repeated the 2008 direct viral challenge trial using SZC cattle (Chapter Four). During this trial we also investigated whether the recombinant bacterial flagellin monomer (FliC), when used as an adjuvant, might improve the vaccine’s efficacy. The findings from this trial indicated that direct challenge with pathogenic AlHV-1 is effective at inducing MCF in SZC cattle and that FliC is not an appropriate adjuvant for this vaccine. Furthermore, with less control group cattle dying of MCF than expected we speculate that SZC cattle may have a degree of resistance to MCF that affords them protection from infection and developing fatal disease. In Chapter Three we investigated aspects of the epidemiology of MCF, specifically whether wildebeest placenta, long implicated by Maasai cattle owners as a source of MCF, might play a role in viral transmission. Additionally, through comparative sequence analysis, at two specific genes (A9.5 and ORF50) of wild-type and atAlHV-1, we investigated whether the `C5000 strain, the source of which was taken from Africa more than 40 years ago, was appropriate for vaccine development. The detection of AlHV-1 virus in approximately 50% of placentae indicated that infection can occur in-utero and that this tissue might play a role in disease transmission. And, despite describing three new alleles of the A9.5 gene (supporting previous evidence that this gene is polymorphic and encodes a secretory protein with interleukin-4 as the major homologue), the observation that the most frequently detected haplotypes, in both wild-type and attenuated AlHV-1, were identical suggests that AlHV-1 has a slow molecular clock and that the attenuated strain was appropriate for vaccine development. In Chapter Five we present the first quantitative assessment of the annual MCF avoidance costs that Maasai pastoralists incur. In particular we estimated that as a result of MCF avoidance 64% of the total daily milk yield during the MCF season was not available to be used by the 81% of the family unit remaining at the permanent boma. This represents an upper-bound loss of approximately 8% of a household0s annual income. Despite these considerable losses we concluded that, given an incidence of fatal MCF in cattle living in wildebeest calving areas of 5% to 10%, if herd owners were to stop trying to avoid MCF by allowing their cattle to graze alongside wildebeest, any gains made through increased availability of milk, improved body condition and reduced energy demands would be offset by an increase in MCF-incidence. With the development of an effective vaccine, however, this alternative strategy might become optimal. The overall conclusion we draw therefore is that, despite the substantial costs incurred each year avoiding MCF, the partial protection afforded by the novel vaccine strategy is not sufficient to warrant a wholesale change in disease avoidance strategy. Nonetheless, even the partial protection provided by this vaccine could be of value to protect animals that cannot be moved, for example where some of the herd remain at the boma to provide milk or where land-use changes make traditional disease avoidance difficult. Furthermore, the vaccine may offer a feasible solution to some of the current land-use challenges and conflicts, providing a degree of protection to valuable livestock where avoidance strategies are not possible, but with less risk of precipitating the potentially damaging environmental consequences, such as overgrazing of highly nutritious seasonal pastures, that might result if herd owners decide they no longer need to avoid wildebeest.