952 resultados para lipid transfer proteins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type III secretion system (T3SS) encoded by the Salmonella pathogenicity island 2 (SPI2) has a central role in systemic infections by Salmonella enterica and for the intracellular phenotype. Intracellular S. enterica uses the SPI2-encoded T3SS to translocate a set of effector proteins into the host cell, which modify host cell functions, enabling intracellular survival and replication of the bacteria. We sought to determine whether specific functions of the SPI2-encoded T3SS can be transferred to heterologous hosts Salmonella bongori and Escherichia coli Mutaflor, species that lack the SPI2 locus and loci encoding effector proteins. The SPI2 virulence locus was cloned and functionally expressed in S. bongori and E. coli. Here, we demonstrate that S. bongori harboring the SPI2 locus is capable of secretion of SPI2 substrate proteins under culture conditions, as well as of translocation of effector proteins under intracellular conditions. An SPI2-mediated cellular phenotype was induced by S. bongori harboring the SPI2 if the sifA locus was cotransferred. An interference with the host cell microtubule cytoskeleton, a novel SPI2-dependent phenotype, was observed in epithelial cells infected with S. bongori harboring SPI2 without additional effector genes. S. bongori harboring SPI2 showed increased intracellular persistence in a cell culture model, but SPI2 transfer was not sufficient to confer to S. bongori systemic pathogenicity in a murine model. Transfer of SPI2 to heterologous hosts offers a new tool for the study of SPI2 functions and the phenotypes of individual effectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight cholesterol based cationic lipids differing in the headgroup have been synthesized based on the ether linkage between the cationic headgroup and the cholesterol backbone. All the lipids formed stable suspensions in water. Transfection efficacies were examined in the absence and presence of serum using their optimized liposomal (lipid:DOPE) formulations. Our results showed that the transfection activities depend on the nature of the headgroup. Lipid bearing 4-N,N′-dimethylaminopyridine (DMAP) as headgroup showed the maximum transfection efficacy in the presence of serum. Importantly, the optimized formulation for this cationic lipid does not require DOPE, which is being used by most commercially available formulations. Cytotoxicity studies showed that the introduction of the positive charge decreases the cell viability of the cationic lipid formulations. Gel electrophoresis and Ethidium bromide exclusion assay revealed the different DNA binding abilities of formulations depending upon the headgroup of the cholesteryl lipid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entry of the plant toxin ricin and its A- and B-subunits in model membranes in the presence as well as absence of monosialoganglioside (GM(1)) has been studied. Dioleoylphosphatidylcholine and 5-, 10-, and 12-doxyl- or 9,10-dibromophosphatidylcholines serve as quenchers of intrinsic tryptophan fluorescence of the proteins. The parallax method of Chattopadhyay and London [(1987) Biochemistry 26, 39-45] has been employed to measure the average membrane penetration depth of tryptophans of ricin and its B-chain and the actual depth of the sole Trp 211 in the A-chain. The results indicate that both of the chains as well as intact ricin penetrate the membrane deeply and the C-terminal end of the A-chain is well inside the bilayer, especially at pH 4.5. An extrinsic probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine (I-AEDANS) has been attached to Cys 259 of the A-chain, and the kinetics of penetration has been followed by monitoring the increase in AEDANS fluorescence at 480 nm. The insertion follows first-order kinetics, and the rate constant is higher at a lower pH. The energy transfer distance analysis between Trp 211 and AEDANS points out that the conformation of the A-chain changes as it inserts into the membrane. CD studies indicate that the helicity of the proteins increases after penetration, which implies that some of the unordered structure in the native protein is converted to the ordered form during this process. Hydrophobic forces seem to be responsible for stabilizing a particular protein conformation inside the membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topological disposition of Wolfgram proteins (WP) and their relationship with 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in human, rat, sheep, bovine, guinea pig and chicken CNS myelin was investigated. Controlled digestion of myelin with trypsin gave a 35KDa protein band (WP-t) when electrophoresed on dodecyl sulfate-polyacrylamide gel in all species. Western blot analysis showed that the WP-t was derived from WP. WP-t was also formed when rat myelin was treated with other proteases such as kallikrein, thermolysin and leucine aminopeptidase. Staining for CNPase activity on nitrocellulose blots showed that WP-t is enzymatically active. Much of the CNPase activity remained with the membrane fraction even after treatment with high concentrations of trypsin when WP were completely hydrolysed and no protein bands with M.W > 14KDa were detected on the gels. Therefore protein fragments of WP with M.W < 14KDa may contain CNPase activity. From these results, it is suggested that the topological disposition of all the various WP is such that a 35KDa fragment is embedded in the lipid bilayer and the remaining fragment exposed at the intraperiod line in the myelin structure which may play a role in the initiation of myelinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant oils are stored in oleosomes or oil bodies, which are surrounded by a monolayer of phospholipids embedded with oleosin proteins that stabilize the structure. Recently, a structural protein, Oleosin3 (OLE3), was shown to exhibit both monoacylglycerol acyltransferase and phospholipase A(2) activities. The regulation of these distinct dual activities in a single protein is unclear. Here, we report that a serine/threonine/tyrosine protein kinase phosphorylates oleosin. Using bimolecular fluorescence complementation analysis, we demonstrate that this kinase interacts with OLE3 and that the fluorescence was associated with chloroplasts. Oleosin-green fluorescent protein fusion protein was exclusively associated with the chloroplasts. Phosphorylated OLE3 exhibited reduced monoacylglycerol acyltransferase and increased phospholipase A(2) activities. Moreover, phosphatidylcholine and diacylglycerol activated oleosin phosphorylation, whereas lysophosphatidylcholine, oleic acid, and Ca2+ inhibited phosphorylation. In addition, recombinant peanut (Arachis hypogaea) kinase was determined to predominantly phosphorylate serine residues, specifically serine-18 in OLE3. Phosphorylation levels of OLE3 during seed germination were determined to be higher than in developing peanut seeds. These findings provide direct evidence for the in vivo substrate selectivity of the dual-specificity kinase and demonstrate that the bifunctional activities of oleosin are regulated by phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria use a number of small basic proteins for organization and compaction of their genomes. By their interaction with DNA, these nucleoid-associated proteins (NAPs) also influence gene expression. Rv3852, a NAP of Mycobacterium tuberculosis, is conserved among the pathogenic and slow-growing species of mycobacteria. Here, we show that the protein predominantly localizes in the cell membrane and that the carboxy-terminal region with the propensity to form a transmembrane helix is necessary for its membrane localization. The protein is involved in genome organization, and its ectopic expression in Mycobacterium smegmatis resulted in altered nucleoid morphology, defects in biofilm formation, sliding motility, and change in apolar lipid profile. We demonstrate its crucial role in regulating the expression of KasA, KasB, and GroEL1 proteins, which are in turn involved in controlling the surface phenotypes in mycobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Algae biofuel have emerged as viable renewable energy sources and are the potential alternatives to fossil-based fuels in recent times. Algae have the potential to generate significant quantities of commercially viable biofuel apart from treating wastewater. Three algal species, viz. Chlorococcum sp., Microcystis sp. and Phormidium sp. proliferating in wastewater ponds were isolated and cultured in the laboratory myxotrophically under similar wastewater conditions. Chlorococcum sp. attained a mean biomass productivity of 0.09 g. I(-1)d(-1) with the maximum `biomass density of 1.33 g I-1 and comparatively higher lipid content of 30.55% (w/w) on the ninth day of the culture experiment. Under similar conditions Microcystis sp. and Phormidium sp. attained mean biomass productivities of 0.058 and 0.063 g I-1 d(-1) with a total lipid content of 8.88% and 18.66% respectively. Biochemical composition (carbohydrates, proteins, lipids and phosphates) variations and lipid accumulation studies were performed by comparison of the ratios of carbohydrate to protein; lipid to protein (L/P) and lipid to phosphates using attenuated total reflectance-Fourier transform infrared spectroscopy which showed higher L/P ratio during the stationary phase of algal growth. Composition analysis of fatty acid methyl ester has been performed using gas chromatography and mass spectrometry. Chlorococcum sp. with higher productivity and faster growth rate has higher lipid content with about 67% of saturated fatty acid dominated by palmitate (36.3%) followed by an unsaturate as linoleate (14%) and has proved to be an economical and viable feedstock for biofuel production compared to the other wastewater-grown species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore forming toxins are being classified in the protein community based on their ability of forming pores in living cell membranes. Some initial study has apparently pointed out the crystallographic pathway rather can be viewed as a structural as well as morphological changes of proteins in terms of self assembly before and during the pore formation process in surfactant medium. Being a water soluble compound, it changes its conformation and originates some pre-pore complex, which later partially goes inside the cell membrane causing a pore. The physical mechanism for this whole process is still unknown. In this study we have tried to understand these types of biological processes from physical point of view by using supported lipid bilayer as a model system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thiolases are enzymes involved in lipid metabolism. Thiolases remove the acetyl-CoA moiety from 3-ketoacyl-CoAs in the degradative reaction. They can also catalyze the reverse Claisen condensation reaction, which is the first step of biosynthetic processes such as the biosynthesis of sterols and ketone bodies. In human, six distinct thiolases have been identified. Each of these thiolases is different from the other with respect to sequence, oligomeric state, substrate specificity and subcellular localization. Four sequence fingerprints, identifying catalytic loops of thiolases, have been described. In this study genome searches of two mycobacterial species (Mycobacterium tuberculosis and Mycobacterium smegmatis), were carried out, using the six human thiolase sequences as queries. Eight and thirteen different thiolase sequences were identified in M. tuberculosis and M. smegmatis, respectively. In addition, thiolase-like proteins (one encoded in the Mtb and two in the Msm genome) were found. The purpose of this study is to classify these mostly uncharacterized thiolases and thiolase-like proteins. Several other sequences obtained by searches of genome databases of bacteria, mammals and the parasitic protist family of the Trypanosomatidae were included in the analysis. Thiolase-like proteins were also found in the trypanosomatid genomes, but not in those of mammals. In order to study the phylogenetic relationships at a high confidence level, additional thiolase sequences were included such that a total of 130 thiolases and thiolase-like protein sequences were used for the multiple sequence alignment. The resulting phylogenetic tree identifies 12 classes of sequences, each possessing a characteristic set of sequence fingerprints for the catalytic loops. From this analysis it is now possible to assign the mycobacterial thiolases to corresponding homologues in other kingdoms of life. The results of this bioinformatics analysis also show interesting differences between the distributions of M. tuberculosis and M. smegmatis thiolases over the 12 different classes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cis-peptide embedded segments are rare in proteins but often highlight their important role in molecular function when they do occur. The high evolutionary conservation of these segments illustrates this observation almost universally, although no attempt has been made to systematically use this information for the purpose of function annotation. In the present study, we demonstrate how geometric clustering and level-specific Gene Ontology molecular-function terms (also known as annotations) can be used in a statistically significant manner to identify cis-embedded segments in a protein linked to its molecular function. The present study identifies novel cis-peptide fragments, which are subsequently used for fragment-based function annotation. Annotation recall benchmarks interpreted using the receiver-operator characteristic plot returned an area-under-curve >0.9, corroborating the utility of the annotation method. In addition, we identified cis-peptide fragments occurring in conjunction with functionally important trans-peptide fragments, providing additional insights into molecular function. We further illustrate the applicability of our method in function annotation where homology-based annotation transfer is not possible. The findings of the present study add to the repertoire of function annotation approaches and also facilitate engineering, design and allied studies around the cis-peptide neighborhood of proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A charge transfer (CT) mediated two-component, multistimuli responsive supergelation involving a L-histidine-appended pyrenyl derivative (PyHisOMe) as a donor and an asymmetric bolaamphiphilic naphthalene-diimide (Asym-NDI) derivative as an acceptor in a 2: 1 mixture of H2O/MeOH was investigated. Asym-NDI alone self-assembled into pH-responsive vesicular nanostructures in water. Excellent selectivity in CT gel formation was achieved in terms of choosing amino acid appended pyrenyl donor scaffolds. Circular di-chroism and morphological studies suggested formation of chiral, interconnected vesicular assemblies resembling ``pearls-on-a-string'' from these CT mixed stacks. XRD studies revealed the formation of monolayer lipid membranes from these CT mixed stacks that eventually led to the formation of individual vesicles. Strong cohesive forces among the interconnected vesicles originate from the protrusion of the oxyethylene chains from the surfaces of the chiral vesicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many organisms ``Universal Stress Proteins'' CUSPS) are induced in response to a variety of environmental stresses. Here we report the structures of two USPs, YnaF and YdaA from Salmonella typhimurium determined at 1.8 angstrom and 2.4 angstrom resolutions, respectively. YnaF consists of a single USP domain and forms a tetrameric organization stabilized by interactions mediated through chloride ions. YdaA is a larger protein consisting of two tandem USP domains. Two protomers of YdaA associate to form a structure similar to the YnaF tetramer. YdaA showed ATPase activity and an ATP binding motif G-2X-G-9X-G(S/T/N) was found in its C-terminal domain. The residues corresponding to this motif were not conserved in YnaF although YnaF could bind ATP. However, unlike YdaA, YnaF did not hydrolyse ATP in vitro. Disruption of interactions mediated through chloride ions by selected mutations converted YnaF into an ATPase. Residues that might be important for ATP hydrolysis could be identified by comparing the active sites of native and mutant structures. Only the C-terminal domain of YdaA appears to be involved in ATP hydrolysis. The structurally similar N-terminal domain was found to bind a zinc ion near the segment equivalent to the phosphate binding loop of the C-terminal domain. Mass spectrometric analysis showed that YdaA might bind a ligand of approximate molecular weight 800 daltons. Structural comparisons suggest that the ligand, probably related to an intermediate in lipid A biosynthesis, might bind at a site close to the zinc ion. Therefore, the N-terminal domain of YdaA binds zinc and might play a role in lipid metabolism. Thus, USPs appear to perform several distinct functions such as ATP hydrolysis, altering membrane properties and chloride sensing. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.