926 resultados para linear machine modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.

A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.

In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.

The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.

The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i) randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-semidefinite (PSD) matrices.

Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix to zero. When the approximant is substituted for the original matrix in computations, its sparsity allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on the approximation error of nonuniform randomized sparsification schemes, measured in the spectral norm and two NP-hard norms that are of interest in computational graph theory and subset selection applications.

Low-rank approximations based on randomized unitary transformations have several desirable properties: they have low communication costs, are amenable to parallel implementation, and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff between the accuracy and cost of generating such approximations. State-of-the-art spectral and Frobenius-norm error bounds are provided.

The last class of algorithms considered are SPSD "sketching" algorithms. Such sketches can be computed faster than approximations based on projecting onto mixtures of the columns of the matrix. The performance of several such sketching schemes is empirically evaluated using a suite of canonical matrices drawn from machine learning and data analysis applications, and a framework is developed for establishing theoretical error bounds.

In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of certain classes of random matrices. These inequalities are used to investigate the behavior of the singular values of a matrix under random sampling, and to derive convergence rates for each individual eigenvalue of a sample covariance matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progress is made on the numerical modeling of both laminar and turbulent non-premixed flames. Instead of solving the transport equations for the numerous species involved in the combustion process, the present study proposes reduced-order combustion models based on local flame structures.

For laminar non-premixed flames, curvature and multi-dimensional diffusion effects are found critical for the accurate prediction of sooting tendencies. A new numerical model based on modified flamelet equations is proposed. Sooting tendencies are calculated numerically using the proposed model for a wide range of species. These first numerically-computed sooting tendencies are in good agreement with experimental data. To further quantify curvature and multi-dimensional effects, a general flamelet formulation is derived mathematically. A budget analysis of the general flamelet equations is performed on an axisymmetric laminar diffusion flame. A new chemistry tabulation method based on the general flamelet formulation is proposed. This new tabulation method is applied to the same flame and demonstrates significant improvement compared to previous techniques.

For turbulent non-premixed flames, a new model to account for chemistry-turbulence interactions is proposed. %It is found that these interactions are not important for radicals and small species, but substantial for aromatic species. The validity of various existing flamelet-based chemistry tabulation methods is examined, and a new linear relaxation model is proposed for aromatic species. The proposed relaxation model is validated against full chemistry calculations. To further quantify the importance of aromatic chemistry-turbulence interactions, Large-Eddy Simulations (LES) have been performed on a turbulent sooting jet flame. %The aforementioned relaxation model is used to provide closure for the chemical source terms of transported aromatic species. The effects of turbulent unsteadiness on soot are highlighted by comparing the LES results with a separate LES using fully-tabulated chemistry. It is shown that turbulent unsteady effects are of critical importance for the accurate prediction of not only the inception locations, but also the magnitude and fluctuations of soot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jet noise reduction is an important goal within both commercial and military aviation. Although large-scale numerical simulations are now able to simultaneously compute turbulent jets and their radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts. A particularly promising modeling approach centers around certain large-scale coherent structures, called wavepackets, that are observed in jets and their radiated sound. The typical approach to modeling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent flow field. The near-field wavepackets obtained from these models show compelling agreement with those educed from experimental and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First, two new solution methods are developed that can be used to efficiently compute wavepackets and their acoustic radiation, reducing the computational cost of the model by more than an order of magnitude. The new techniques are spatial integration methods and constitute a well-posed, convergent alternative to the frequently used parabolized stability equations. Using concepts related to well-posed boundary conditions, the methods are formulated for general hyperbolic equations and thus have potential applications in many fields of physics and engineering. Second, the nonlinear and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data along with two data decomposition techniques to educe the actual nonlinear forcing experienced by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper orthogonal decomposition, while high gain modes are identified using a novel technique called empirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an acoustic response appear to take the form of random turbulent fluctuations, implying that direct feedback from nonlinear interactions amongst wavepackets is not an essential noise source mechanism. This suggests that the essential ingredients of sound generation in high Reynolds number jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing terms, a conclusion that has important implications for jet noise modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonparametric Bayesian extension of Factor Analysis (FA) is proposed where observed data $\mathbf{Y}$ is modeled as a linear superposition, $\mathbf{G}$, of a potentially infinite number of hidden factors, $\mathbf{X}$. The Indian Buffet Process (IBP) is used as a prior on $\mathbf{G}$ to incorporate sparsity and to allow the number of latent features to be inferred. The model's utility for modeling gene expression data is investigated using randomly generated data sets based on a known sparse connectivity matrix for E. Coli, and on three biological data sets of increasing complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 1 of this paper reanalyzed previously published measurements from the rotor of a low-speed, single-stage, axial-flow turbine, which highlighted the unsteady nature of the suction surface transition process. Part 2 investigates the significance of the wake jet and the unsteady frequency parameter. Supporting experiments carried out in a linear cascade with varying inlet turbulence are described, together with a simple unsteady transition model explaining the features of seen in the turbine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an investigation into the losses in a three-phase induction motor under different pulse width modulation (PWM) excitation conditions. The impacts of Sinusoidal PWM, Space Vector PWM and Discontinuous PWM on machine loss are compared and studied. Finite element analysis simulations are employed to predict the machine losses with the loss breakdown analysis under different PWM schemes. Direct Calorimetric measurements are utilized to verify the finite element modeling and provide direct quantifications of machine loss under modern PWM techniques. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors are currently investigating the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in coils made from YBCO superconductors. In this paper, a 2D finite element model based on the H formulation is introduced. The model is then used to calculate the transport AC loss using both a bulk approximation and modeling the individual turns in a racetrack-shaped coil. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's superconducting permanent magnet synchronous motor design. The transport AC loss of a stator coil is measured using an electrical method based on inductive compensation using a variable mutual inductance. The simulated results are compared with the experimental results, verifying the validity of the model, and ways to improve the accuracy of the model are discussed. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tubular permanent magnet linear generators are a promising generator technology for use in marine renewables. One aspect of their design relates to the conditions necessary for achieving a smooth thrust response from the generator, free from cogging and periodic variations due to spatial harmonics of the flux cutting the generator coils. This paper presents an experimental and finite element study of the sources of thrust ripple in a prototype linear generator for marine generation. A simple self-commutated control scheme is shown, which uses linear Hall-effect sensors and look-up-table based feed-forward compensation to derive the excitation currents required to drive the machine with constant force. Details of the controller's FPGA based implementation are given, including its strategy for detecting sensor failure. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in modeling driver steering control with preview are reviewed. While some validation with experimental data has been presented, the rigorous application of formal system identification methods has not yet been attempted. This paper describes a steering controller based on linear model-predictive control. An indirect identification method that minimizes steering angle prediction error is developed. Special attention is given to filtering the prediction error so as to avoid identification bias that arises from the closed-loop operation of the driver-vehicle system. The identification procedure is applied to data collected from 14 test drivers performing double lane change maneuvers in an instrumented vehicle. It is found that the identification procedure successfully finds parameter values for the model that give small prediction errors. The procedure is also able to distinguish between the different steering strategies adopted by the test drivers. © 2006 IEEE.