950 resultados para ligules and style branch under SEM
Resumo:
Includes bibliography
Resumo:
This paper proposes an approach to load characterization and revenue metering, which accounts for the influence of supply deterioration and line impedance. It makes use of the Conservative Power Theory and aims at characterizing the load from the measurements done at the point of common coupling. Despite the inherent limitations of a single-point measurement, the proposed methodology enables evaluation of power terms, which clarify the effects of reactivity, asymmetry and distortion, and attempts to depurate the power consumption accounted to the load from those terms deriving from supply nonidealities.
Resumo:
A field trial was conducted designed in a completely randomized block in a 4 x 3 factorial arrangement to evaluate the application of nitrogen doses (N) (0, 40, 80 and 160 kg/ha) on the morphogenical characteristics and dry matter partition of three forage grasses (Panicum maximum cvs. Mombasa and Tanzania and Brachiaria sp. Hybrid Mulato). The leaf appearance (LAR, leaf/day) and stretching (LER; mm/day) rates, the number of green leaves per tiller (NLT) and the average weight of tillers (MTW; g) presented s positive linear response to the N dose while the phyllochron (Phil; day/leaves) showed a negative linear response. The highest LER, IAL and final leaf length (FLL; cm) occurred in the Mombaca and Tanzania grasses, while the highest LAR occurred in the Mulato grass. There was a negative quadratic effect of the N dose on the stem elongation rate (SER; mm/day) and LF. The Mombaca and Tanzania grasses presented the highest SER; however, in just two forages. The production of total dry matter (TDM; kg/ha), leaves (LDM; kg/ha) and stems (SDM; kg/ha) increased linearly and quadratically with the N dose, respectively, for the Mombaca and Tanzania grasses. There was a high positive correlation among DM, LDM and SDM and the Mombaca grass MTW. The dry matter production and morphogenic characteristics were influenced by the nitrogen fertilization as a result of the substantial increase in the flow of tissues stimulated by fertilization, proving the importance of N for forage biomass accumulation.
Resumo:
The CaSnO3 perovskite is investigated under geochemical pressure, up to 25 GPa, by means of periodic ab initio calculations performed at B3LYP level with local Gaussian-type orbital basis sets. Structural, elastic, and spectroscopic (phonon wave-numbers, infrared and Raman intensities) properties are fully characterized and discussed. The evolution of the Raman spectrum of CaSnO3 under pressure is reported to remarkably agree with a recent experimental determination [J. Kung, Y. J. Lin, and C. M. Lin, J. Chem. Phys. 135, 224507 (2011)] as regards both wave-number shifts and intensity changes. All phonon modes are symmetry-labeled and bands assigned. The single-crystal total spectrum is symmetry-decomposed into the six directional spectra related to the components of the polarizability tensor. The infrared spectrum at increasing pressure is reported for the first time and its main features discussed. All calculations are performed using the CRYSTAL14 program, taking advantage of the new implementation of analytical infrared and Raman intensities for crystalline materials. (C) 2015 AIP Publishing LLC.
Resumo:
The effect of inulin and/or okara flour on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product (FSP) and on probiotic survival under in vitro simulated gastrointestinal conditions were investigated throughout 28 days of storage at 4 °C. Employing a 22 design, four FSP trials were produced from soymilk fermented with ABT-4 culture (La-5, Bb-12, and Streptococcus thermophilus): FSP (control); FSP-I (with inulin, 3 g/100 mL of soymilk); FSP-O (with okara, 5 g/100 mL); FSP-IO (with inulin + okara, ratio 3:5 g/100 mL). Probiotic viabilities ranged from 8 to 9 log cfu/g during the 28 days of storage, and inulin and/or okara flour did not affect the viability of La-5 and Bb-12. Bb-12 resistance to the artificial gastrointestinal juices was higher than for La-5, since the Bb-12 and La-5 populations decreased approximately 0.6 log cfu/g and 3.8 log cfu/g, respectively, throughout storage period. Even though the protective effect of inulin and/or okara flour on probiotic microorganisms was not significant, when compared to a fresh culture, the FSP matrix improved Bb-12 survival on day 1 of storage and may be considered a good vehicle for Bb-12 and could play an important role in probiotic protection against gastrointestinal juices. © 2013 Elsevier Ltd.
Resumo:
The present work aimed to estimate heritability and genetic correlations of reproductive features of Nellore bulls, offspring of mothers classified as superprecocious (M1), precocious (M2) and normal (M3). Twenty one thousand hundred and eighty-six animals with average age of 21.29 months were used, evaluated through the breeding soundness evaluation from 1999 to 2008. The breeding soundness features included physical semen evaluation (progressive sperm motility and sperm vigour), semen morphology (major, minor and total sperm defects), scrotal circumference (SC), testicular volume (TV) and SC at 18 months of age (SC18). The components of variance, heritability and genetic correlations for and between the features were estimated simultaneously by restricted maximum likelihood, with the use of the vce software system vs 6. The heritability estimates were high for SC18, SC and TV (0.43, 0.63 and 0.54; 0.45, 0.45 and 0.44; 0.42, 0.45 and 0.41, respectively for the categories of mothers M1, M2 and M3) and low for physical and morphological semen aspects. The genetic correlations between SC18 and SC were high, as well as between these variables with TV. High and positive genetic correlations were recorded among SC18, SC and TV with the physical aspects of the semen, although no favourable association was verified with the morphological aspects, for the three categories of mothers. It can be concluded that the mothers sexual precocity did not affect the heritability of their offspring reproduction features.
Resumo:
Obtaining ecotoxicological data on pesticides in tropical regions is imperative for performing more realistic risk analysis, and avoidance tests have been proposed as a useful, fast and cost-effective tool. Therefore, the present study aimed to evaluate the avoidance behavior of Eisenia andrei to a formulated product, Vertimec(A (R)) 18 EC (a.i abamectin), in tests performed on a reference tropical artificial soil (TAS), to derive ecotoxicological data on tropical conditions, and a natural soil (NS), simulating crop field conditions. In TAS tests an adaptation of the substrate recommended by OECD and ISO protocols was used, with residues of coconut fiber as a source of organic matter. Concentrations of the pesticide on TAS test ranged from 0 to 7 mg abamectin/kg (dry weight-d.w.). In NS tests, earthworms were exposed to samples of soils sprayed in situ with: 0.9 L of Vertimec(A (R)) 18 EC/ha (RD); twice as much this dosage (2RD); and distilled water (Control), respectively, and to 2RD: control dilutions (12.5, 25, 50, 75%). All tests were performed under 25 +/- A 2A degrees C, to simulate tropical conditions, and a 12hL:12hD photoperiod. The organisms avoided contaminated TAS for an EC50,48h = 3.918 mg/kg soil d.w., LOEC = 1.75 mg/kg soil d.w. and NOEC = 0.85 mg/kg soil d.w. No significant avoidance response occurred for any NS test. Abamectin concentrations in NS were rather lower than EC50, 48h and LOEC determined in TAS tests. The results obtained contribute to overcome a lack of ecotoxicological data on pesticides under tropical conditions, but more tests with different soil invertebrates are needed to improve pesticides risk analysis.
Resumo:
The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.
Resumo:
Reproducing Fourier's law of heat conduction from a microscopic stochastic model is a long standing challenge in statistical physics. As was shown by Rieder, Lebowitz and Lieb many years ago, a chain of harmonically coupled oscillators connected to two heat baths at different temperatures does not reproduce the diffusive behaviour of Fourier's law, but instead a ballistic one with an infinite thermal conductivity. Since then, there has been a substantial effort from the scientific community in identifying the key mechanism necessary to reproduce such diffusivity, which usually revolved around anharmonicity and the effect of impurities. Recently, it was shown by Dhar, Venkateshan and Lebowitz that Fourier's law can be recovered by introducing an energy conserving noise, whose role is to simulate the elastic collisions between the atoms and other microscopic degrees of freedom, which one would expect to be present in a real solid. For a one-dimensional chain this is accomplished numerically by randomly flipping - under the framework of a Poisson process with a variable “rate of collisions" - the sign of the velocity of an oscillator. In this poster we present Langevin simulations of a one-dimensional chain of oscillators coupled to two heat baths at different temperatures. We consider both harmonic and anharmonic (quartic) interactions, which are studied with and without the energy conserving noise. With these results we are able to map in detail how the heat conductivity k is influenced by both anharmonicity and the energy conserving noise. We also present a detailed analysis of the behaviour of k as a function of the size of the system and the rate of collisions, which includes a finite-size scaling method that enables us to extract the relevant critical exponents. Finally, we show that for harmonic chains, k is independent of temperature, both with and without the noise. Conversely, for anharmonic chains we find that k increases roughly linearly with the temperature of a given reservoir, while keeping the temperature difference fixed.
Resumo:
Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.
Resumo:
Background—Pathology studies on fatal cases of very late stent thrombosis have described incomplete neointimal coverage as common substrate, in some cases appearing at side-branch struts. Intravascular ultrasound studies have described the association between incomplete stent apposition (ISA) and stent thrombosis, but the mechanism explaining this association remains unclear. Whether the neointimal coverage of nonapposed side-branch and ISA struts is delayed with respect to well-apposed struts is unknown. Methods and Results—Optical coherence tomography studies from 178 stents implanted in 99 patients from 2 randomized trials were analyzed at 9 to 13 months of follow-up. The sample included 38 sirolimus-eluting, 33 biolimus-eluting, 57 everolimus-eluting, and 50 zotarolimus-eluting stents. Optical coherence tomography coverage of nonapposed side-branch and ISA struts was compared with well-apposed struts of the same stent by statistical pooled analysis with a random-effects model. A total of 34 120 struts were analyzed. The risk ratio of delayed coverage was 9.00 (95% confidence interval, 6.58 to 12.32) for nonapposed side-branch versus well-apposed struts, 9.10 (95% confidence interval, 7.34 to 11.28) for ISA versus well-apposed struts, and 1.73 (95% confidence interval, 1.34 to 2.23) for ISA versus nonapposed side-branch struts. Heterogeneity of the effect was observed in the comparison of ISA versus well-apposed struts (H=1.27; I2=38.40) but not in the other comparisons. Conclusions—Coverage of ISA and nonapposed side-branch struts is delayed with respect to well-apposed struts in drug-eluting stents, as assessed by optical coherence tomography.