981 resultados para lattice
Resumo:
To simulate fracture behaviors in concrete more realistically, a theoretical analysis on the potential question in the quasi-static method is presented, then a novel algorithm is proposed which takes into account the inertia effect due to unstable crack propagation and meanwhile requests much lower computational efforts than purely dynamic method. The inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, results may become questionable if a fracture process including unstable cracking is simulated by the quasi-static procedure excluding completely inertia effects. However, it requires much higher computational effort to simulate experiments with not very high loading rates by the dynamic method. In this investigation which can be taken as a natural continuation, the potential question of quasi-static method is analyzed based on the dynamic equations of motion. One solution to this question is the new algorithm mentioned above. Numerical examples are provided by the generalized beam (GB) lattice model to show both fracture processes under different loading rates and capability of the new algorithm.
Resumo:
A new numerical procedure is proposed to investigate cracking behaviors induced by mismatch between the matrix phase and aggregates due to matrix shrinkage in cement-based composites. This kind of failure processes is simplified in this investigation as a purely spontaneous mechanical problem, therefore, one main difficulty during simulating the phenomenon lies that no explicit external load serves as the drive to propel development of this physical process. As a result, it is different from classical mechanical problems and seems hard to be solved by using directly the classical finite element method (FEM), a typical kind of "load -> medium -> response" procedures. As a solution, the actual mismatch deformation field is decomposed into two virtual fields, both of which can be obtained by the classical FEM. Then the actual response is obtained by adding together the two virtual displacement fields based on the principle of superposition. Then, critical elements are detected successively by the event-by-event technique. The micro-structure of composites is implemented by employing the generalized beam (GB) lattice model. Numerical examples are given to show the effectiveness of the method, and detailed discussions are conducted on influences of material properties.
Resumo:
The beam lattice-type models, such as the Euler-Bernoulli (or Timoshenko) beam lattice and the generalized beam (GB) lattice, have been proved very effective in simulating failure processes in concrete and rock due to its simplicity and easy implementation. However, these existing lattice models only take into account tensile failures, so it may be not applicable to simulation of failure behaviors under compressive states. The main aim in this paper is to incorporate Mohr-Coulomb failure criterion, which is widely used in many kinds of materials, into the GB lattice procedure. The improved GB lattice procedure has the capability of modeling both element failures and contact/separation of cracked elements. The numerical examples show its effectiveness in simulating compressive failures. Furthermore, the influences of lateral confinement, friction angle, stiffness of loading platen, inclusion of aggregates on failure processes are respectively analyzed in detail.
Resumo:
This thesis addresses whether it is possible to build a robust memory device for quantum information. Many schemes for fault-tolerant quantum information processing have been developed so far, one of which, called topological quantum computation, makes use of degrees of freedom that are inherently insensitive to local errors. However, this scheme is not so reliable against thermal errors. Other fault-tolerant schemes achieve better reliability through active error correction, but incur a substantial overhead cost. Thus, it is of practical importance and theoretical interest to design and assess fault-tolerant schemes that work well at finite temperature without active error correction.
In this thesis, a three-dimensional gapped lattice spin model is found which demonstrates for the first time that a reliable quantum memory at finite temperature is possible, at least to some extent. When quantum information is encoded into a highly entangled ground state of this model and subjected to thermal errors, the errors remain easily correctable for a long time without any active intervention, because a macroscopic energy barrier keeps the errors well localized. As a result, stored quantum information can be retrieved faithfully for a memory time which grows exponentially with the square of the inverse temperature. In contrast, for previously known types of topological quantum storage in three or fewer spatial dimensions the memory time scales exponentially with the inverse temperature, rather than its square.
This spin model exhibits a previously unexpected topological quantum order, in which ground states are locally indistinguishable, pointlike excitations are immobile, and the immobility is not affected by small perturbations of the Hamiltonian. The degeneracy of the ground state, though also insensitive to perturbations, is a complicated number-theoretic function of the system size, and the system bifurcates into multiple noninteracting copies of itself under real-space renormalization group transformations. The degeneracy, the excitations, and the renormalization group flow can be analyzed using a framework that exploits the spin model's symmetry and some associated free resolutions of modules over polynomial algebras.
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.
Resumo:
The lattice anomalies and magnetic states in the (Fe100-xMnx)5Si3 alloys have been investigated. Contrary to what was previously reported, results of x-ray diffraction show a second phase (α') present in Fe-rich alloys and therefore strictly speaking a complete solid solution does not exist. Mössbauer spectra, measured as a function of composition and temperature, indicate the presence of two inequivalent sites, namely 6(g) site (designated as site I) and 4(d) (site II). A two-site model (TSM) has been introduced to interpret the experimental findings. The compositional variation of lattice parameters a and c, determined from the x-ray analysis, exhibits anomalies at x = 22.5 and x = 50, respectively. The former can be attributed to the effect of a ferromagnetic transition; while the latter is due to the effect of preferential substitution between Fe and Mn atoms according to TSM.
The reduced magnetization of these alloys deduced from magnetic hyperfine splittings has been correlated with the magnetic transition temperatures in terms of the molecular field theory. It has been found from both the Mössbauer effect and magnetization measurements that for composition 0 ≤ x ˂ 50 both sites I and II are ferromagnetic at liquid-nitrogen temperature and possess moments parallel to each other. In the composition range 50 ˂ x ≤ 100 , the site II is antiferromagnetic whereas site I is paramagnetic even at a temperature below the bulk Néel temperatures. In the vicinity of x = 50 however, site II is in a state of transition between ferromagnetism and antiferromagnetism. The present study also suggests that only Mn in site II are responsible for the antiferromagnetism in Mn5Si3 contrary to a previous report.
Electrical resistance has also been measured as a function of temperature and composition. The resistive anomalies observed in the Mn-rich alloys are believed to result from the effect of the antiferromagnetic Brillouin zone on the mobility of conduction electrons.
Resumo:
In this thesis, a collection of novel numerical techniques culminating in a fast, parallel method for the direct numerical simulation of incompressible viscous flows around surfaces immersed in unbounded fluid domains is presented. At the core of all these techniques is the use of the fundamental solutions, or lattice Green’s functions, of discrete operators to solve inhomogeneous elliptic difference equations arising in the discretization of the three-dimensional incompressible Navier-Stokes equations on unbounded regular grids. In addition to automatically enforcing the natural free-space boundary conditions, these new lattice Green’s function techniques facilitate the implementation of robust staggered-Cartesian-grid flow solvers with efficient nodal distributions and fast multipole methods. The provable conservation and stability properties of the appropriately combined discretization and solution techniques ensure robust numerical solutions. Numerical experiments on thin vortex rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical fidelity, and computational efficiency of the present formulations.
Resumo:
We systematically investigate the square-lattice dielectric photonic crystals that have been used to demonstrate flat slab imaging experimentally. A right-handed Bloch mode is found in the left-handed frequency region by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Using the multiple scattering theory, numerical simulations demonstrate that the left-handed mode and the right-handed mode are excited simultaneously by a point source and result in two kinds of transmitted waves. Impacted by the evanescent waves, superposition of these transmitted waves brings on complicated near field distributions such as the so-called imaging and its disappearance.
Resumo:
Optical properties of a two-dimensional square-lattice photonic crystal are systematically investigated within the partial bandgap through anisotropic characteristics analysis and numerical simulation of field pattern. Using the plane-wave expansion method and Hellmann-Feynman theorem, the relationships between the incident and refracted angles for both phase and group velocities are calculated to analyze light propagation from air to photonic crystals. Three kinds of flat slab focusing are summarized and demonstrated by numerical simulations using the multiple scattering method. (c) 2007 Optical Society of America