979 resultados para iron (0)
Resumo:
The effect of iron promoter on the catalytic properties of Rh-Mn-Li/SiO2 catalyst in the synthesis Of C-2 oxygenates from syngas was investigated by means of the following techniques: CO hydrogenation reaction, temperature-programmed reduction (TPR), temperature-programmed desorption and reaction of adsorbed CO (CO-TPD and TPSR) and pulse adsorption of CO. The results showed that the addition of iron promoter could improve the activity of the catalysts. Unexpectedly, the yield of C-2 oxygenates increased greatly from 331.6 up to 457.5 g/(kg h) when 0.05% Fe was added into Rh-Mn-Li/SiO2 catalyst, while no change in the selectivity to C-2 oxygenates was observed. However, the activity and selectivity Of C-2 oxygenates were greatly decreased if the Fe amount exceeded 1.0%. The existence of a little iron decreased the reducibility of Rh precursor, while the reduction of Fe component itself became easier. CO uptake decreased with increasing the quantity of Fe addition. This phenomenon was further confirmed by CO-TPD results. The CO-TPD and TPSR results showed that only the strongly adsorbed CO could be hydrogenated, while the weakly adsorbed CO was desorbed. We propose that Fe is highly dispersed and in close contact with Rh and Mn; such arrangements were responsible for the high yield Of C-2 oxygenates. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Adsorption isotherms in solutions with ionic strengths of 0.01 at 25°C were measured over the arsenite and arsenate concentration range 10−7−10−3 M and the pH range 4–10. At low concentrations, these isotherms obeyed equations of the Langmuir type. At higher concentrations the adsorption isotherms were linear, indicating the existence of more than one type of surface site on the amorphous iron hydroxide adsorbent. Removal of arsenite and arsenate by amorphous iron hydroxide throughout the concentration range were determined as a function of pH. By careful selection of the relative concentration of arsenic and amorphous iron hydroxide and pH, removals on the order of 92% can be achieved.
Resumo:
Freshly prepared Fe and Al hydrous oxide gels and the amorphous product of heating gibbsite selectively adsorbed traces of Ca and Sr from solutions containing a large excess (∼1M) of NaNO3. The fraction of the added Ca (Sr) adsorbed depended principally on the suspension pH, the amount of solid present, and to a lesser extent on the NaNO3 concentration. Significant Ca and Sr adsorption occurred on the Fe and Al gels, and heated gibbsite, at pH values below the points of zero charge (8.1, 9.4, and 8.3±0.1, respectively), indicating specific adsorption. The pH (± 0.10) at which 50% of the Ca was adsorbed (pH50) occurred at pH 7.15 for the Fe gel (0.093M Fe), 8.35 for the Al gel (0.093M Al), and 6.70 for the heated gibbsite (0.181M Al); for Sr, the pH50 values were 7.10, 9.00, and 6.45, respectively. For the Fe gel and heated gibbsite, an empirical model based on the law of mass action described the pH dependence of adsorption reasonably well and suggested that for each Ca or Sr fraction adsorbed, approximately one proton was released. Failure of the Al gel to fit this model may have resulted from its rapid aging.
Resumo:
A new iron(III) coordination compound exhibiting a two-step spin-transition behavior with a remarkably wide [HS-LS] plateau of about 45 K has been synthesized from a hydrazino Schiff-base ligand with an N,N,O donor set, namely 2-methoxy-6-(pyridine-2-ylhydrazonomethyl) phenol (Hmph). The single-crystal X-ray structure of the coordination compound {[Fe(mph)(2)](ClO4)(MeOH)(0.5)(H2O)(0.5)}(2) (1) determined at 150 K reveals the presence of two slightly different iron(III) centers in pseudo-octahedral environments generated by two deprotonated tridentate mph ligands. The presence of hydrogen bonding interactions, instigated by the well-designed ligand, may justify the occurrence of the abrupt transitions. 1 has been characterized by temperature-dependent magnetic susceptibility measurements, EPR spectroscopy, differential scanning calorimetry, and Fe-51 Mossbauer spectroscopy, which all confirm the occurrence of a two-step transition. In addition, the iron(III) species in the high-spin state has been trapped and characterized by rapid cooling EPR studies.