283 resultados para ionosphere


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The four Cluster spacecraft offer a unique opportunity to study structure and dynamics in the magnetosphere and we discuss four general ways in which ground-based remote-sensing observations of the ionosphere can be used to support the in-situ measurements. The ionosphere over the Svalbard islands will be studied in particular detail, not only by the ESR and EISCAT incoherent scatter radars, but also by optical instruments, magnetometers, imaging riometers and the CUTLASS bistatic HF radar. We present an on-line procedure to plan coordinated measurements by the Cluster spacecraft with these combined ground-based systems. We illustrate the philosophy of the method, using two important examples of the many possible configurations between the Cluster satellites and the ground-based instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the characteristics of magnetosheath plasma precipitation in the “cusp” ionosphere for when the reconnection at the dayside magnetopause takes place only in a series of pulses. It is shown that even in this special case, the low-altitude cusp precipitation is continuous, unless the intervals between the pulses are longer than observed intervals between magnetopause flux transfer event (FTE) signatures. We use FTE observation statistics to predict, for this case of entirely pulsed reconnection, the occurrence frequency, the distribution of latitudinal widths, and the number of ion dispersion steps of the cusp precipitation for a variety of locations of the reconnection site and a range of values of the local de-Hoffman Teller velocity. It is found that the cusp occurrence frequency is comparable with observed values for virtually all possible locations of the reconnection site. The distribution of cusp width is also comparable with observations and is shown to be largely dependent on the distribution of the mean reconnection rate, but pulsing the reconnection does very slightly increase the width of that distribution compared with the steady state case. We conclude that neither cusp occurrence probability nor width can be used to evaluate the relative occurrence of reconnection behaviors that are entirely pulsed, pulsed but continuous and quasi-steady. We show that the best test of the relative frequency of these three types of reconnection is to survey the distribution of steps in the cusp ion dispersion characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report multi-instrument observations during an isolated substorm on 17 October 1989. The EISCAT radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71°-78°. SAMNET and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. IMP-8 magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF). We infer that the polar cap expanded as a result of the addition of open magnetic flux to the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71° by the time of the expansion phase onset. A westward electrojet, centred at 65.4°, occurred at the onset of the expansion phase. This electrojet subsequently moved poleward to a maximum of 68.1° at 2000 UT and also widened. During the expansion phase, there is evidence of bursts of plasma flow which are spatially localised at longitudes within the substorm current wedge and which occurred well poleward of the westward electrojet. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the “distant” neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase. It is not obvious whether the electrojet mapped to a near-Earth neutral line, but at its most poleward, the expanded electrojet does not reach the estimated latitude of the polar cap boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of zero-flow equilibria of the magnetosphere-ionosphere system leads to a large number of predictions concerning the ionospheric signatures of pulsed magnetopause reconnection. These include: poleward-moving F-region electron temperature enhancements and associated transient 630nm emission; associated poleward plasma flow which, compared to the pulsed variation of the reconnection rate, is highly smoothed by induction effects; oscillatory latitudinal motion of the open/closed field line boundary; phase lag of plasma flow enhancements after equatorward motions of the boundary; azimuthal plasma flow bursts, coincident in time and space with the 630nm-dominant auroral transients, only when the magnitude of the By component of the interplanetary magnetic field (IMF) is large; azimuthal-then-poleward motion of 630nm-dominant transients at a velocity which at all times equals the internal plasma flow velocity; 557.7nm-dominant transients on one edge of the 630nm-dominant transient (initially, and for large |By|, on the poleward or equatorward edge depending on the polarity of IMF By); tailward expansion of the flow response at several km s-1; and discrete steps in the cusp ion dispersion signature between the polewardmoving structures. This paper discusses these predictions and how all have recently been confirmed by combinations of observations by optical instruments on the Svalbard Islands, the EISCAT radars and the DMSP and DE satellites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the “pulsating cusp” model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal "quasi-steady reconnection" (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that “quasi-steady” in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recurrence rate of flux transfer events (FTEs) observed near the dayside magnetopause is discussed. A survey of magnetopause observations by the ISEE satellites shows that the distribution of the intervals between FTE signatures has a mode value of 3 min, but is highly skewed, having upper and lower decile values of 1.5 min and 18.5 min, respectively. The mean value is found to be 8 min, consistent with previous surveys of magnetopause data. The recurrence of quasi-periodic events in the dayside auroral ionosphere is frequently used as evidence for an association with magnetopause FTEs, and the distribution of their repetition intervals should be matched to that presented here if such an association is to be confirmed. A survey of 1 year's 15-s data on the interplanetary magnetic field (IMF) suggests that the derived distribution could arise from fluctuations in the IMF Bz component, rather than from a natural oscillation frequency of the magnetosphere-ionosphere system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low- and high-latitude boundary layers of the earth's magnetosphere [low-latitude boundary layer (LLBL) and mantle] play important roles in transferring momentum and energy from the solar wind to the magnetosphere-ionosphere system. Particle precipitation, field-aligned current, auroral emission, ionospheric ion drift and ground magnetic perturbations are among the low-altitude parameters that show signatures of various plasma processes in the LLBL and the magnetopause current layer. Magnetic merging events, Kelvin-Helmholtz waves, and pressure pulses excited by the variable solar wind/magnetosheath plasma are examples of boundary phenomena that may be coupled to the ionosphere via field-aligned currents. Optical auroral observation, by photometry and all-sky TV cameras, is a unique technique for investigating the spatial and temporal structure of the electron precipitation associated with such phenomena. However, the distinction between the different boundary layer plasma populations cannot in general be unambiguously determined by optics alone. Additional information, such as satellite observations of particle boundaries and field-aligned currents, is needed in order to identify the plasma source(s) and the magnetosphere-ionosphere coupling mode(s). Two categories of auroral activity/structure in the vicinity of the polar cusp are discussed in this paper, based on combined ground and satellite data. In one case, the quasi-periodic sequence of auroral events at the polar cap boundary involves accelerated electrons (< 1 keV) moving poleward (< 1 km s-1) and azimuthally along the persistent cusp/cleft arc poleward boundary with velocities (< 4 km s-1), comparable to the local ionospheric ion drift during periods of southward IMF. A critical question is whether or not the optical events signify a corresponding plasma flow across the open/closed field line boundary in such cases. Near-simultaneous observations of magnetopause flux transfer events (FTEs) and such optical/ion drift events are reported. The reverse pattern of motion of discrete auroral forms is observed during positive interplanetary magnetic field (IMF) B(Z), i.e. equatorward motion into the cusp/cleft background arc from the poleward edge. Combined satellite and ground-based information for the latter cases indicate a source mechanism, poleward of the cusp at the high-latitude magnetopause or plasma mantle, giving rise to strong momentum transfer and electron precipitation structures within a approximately 200 km-wide latitudinal zone at the cusp/cleft poleward boundary. The striking similarities of auroral electrodynamics in the cleft/mantle region during northward and southward IMF indicate that a qualitatively similar solar wind-magnetosphere coupling mode is operating. It is suggested that, in both cases, the discrete auroral forms represent temporal/spatial structure of larger-scale convection over the polar magnetosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review presents recent observations of high-latitude ionospheric plasma convection, obtained using the EISCAT radar in the 'Polar' experiment mode. The paper is divided into two main parts. Firstly, the delay in the response of dayside high-latitude flows to changes in the interplanetary magnetic field is discussed. The results show the importance for the excitation of dayside convection of the transfer of magnetic flux from the dayside into the tail lobe. Consequently, ionospheric convection should be thought of as the sum of two intrinsically time-dependent flow patterns. The first of these patterns is directly driven by solar wind-magnetosphere coupling, dominates ionospheric flows on the dayside, is associated with an expanding polar cap area and is the F-region flow equivalent of the DP-2 E-region current system. The second of the two patterns is driven by the release of energy stored in the geomagnetic tail, dominates ionospheric flows on the nightside, is associated with a contracting polar cap and is equivalent to the DP-1, or substorm, current system. In the second half of the paper, various transient flow bursts observed in the vicinity of the dayside cusp are studied. These radar data, combined with simultaneous optical observations of transient dayside aurorae, strongly suggest that momentum is transferred across the magnetopause and into the ionosphere in a series of bursts, each associated with voltages of 30-80 kV. Similarities between these bursts and flux transfer events observed at the magnetopause are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A survey is presented of hourly averages of observations of the interplanetary medium, made by satellites close to the Earth (i.e. at l a.u.) in the years 1963-1986. This survey therefore covers two complete solar cycles (numbers 20 and 21). The distributions and solar-cycle variations of IMF field strength, B, and its northward component (in GSM coordinates), B(z), and of the solar-wind density, n, speed, v, and dynamic pressure, P, are discussed. Because of their importance to the terrestrial magnetosphere/ionosphere, particular attention is given to B(z) and P. The solar-cycle variation in the magnitude and variability of B(z) previously reported for cycle 20, is also found for cycle 21. However, the solar-wind data show a number of differences between cycles 20 and 21. The average dynamic pressure is found to show a solar-cycle variation and a systematic increase over the period of the survey. The minimum of dynamic pressure at sunspot maximum is mainly due to reduced solar-wind densities in cycle 20, but lower solar-wind speed in cycle 21 is a more significant factor. The distribution of the duration of periods of stable polarity of the IMF B(z) component shows that the magnetosphere could achieve steady state for only a small fraction of the time and there is some evidence for a solar-cycle variation in this fraction. It is also found that the polarity changes in the IMF B(z) fall into two classes: one with an associated change in solar-wind dynamic pressure, the other without such a change. However, in only 20% of cases does the dynamic pressure change exceed 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude-MLT sector. The observations were made during a January 1989 campaign by utilizing the high F region ion densities during the maximum phase of the solar cycle. The characteristic intermittent optical events, covering ∼300 km in east-west extent, move eastward (antisunward) along the poleward boundary of the persistent background aurora at velocities of ∼1.5 km s−1 and are associated with ion flows which swing from eastward to westward, with a subsequent return to eastward, during the interval of a few minutes when there is enhanced auroral emission within the radar field of view. The breakup of discrete auroral forms occurs at the reversal (negative potential) that forms between eastward plasma flow, maximizing near the persistent arc poleward boundary, and strong transient westward flow to the south. The reported events, covering a 35 min interval around 1400 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wave like motions of the low-latitude boundary layer (LLBL)/plasma sheet (PS) boundary. On the basis of this interpretation the observed spot size, speed and repetition period (∼10 min) give a wavelength (the distance between spots) of ∼900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. We also discuss these data in relation to random, patchy reconnection (as has recently been invoked to explain the presence of the sheathlike plasma on closed field lines in the LLBL). In view of the lack of IMF data, and the existing uncertainty on the location of the open-closed field line boundary relative to the optical events, an unambiguous discrimination between the different alternatives is not easily obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of flow and current vortices in the dayside auroral ionosphere has been predicted for two processes ocurring at the dayside magnetopause. The first of these mechanisms is time-dependent magnetic reconnection, in “flux transfer events” (FTEs); the second is the action of solar wind dynamic pressure changes. The ionospheric flow signature of an FTE should be a twin vortex, with the mean flow velocity in the central region of the pattern equal to the velocity of the pattern as a whole. On the other hand, a pulse of enhanced or reduced dynamic pressure is also expected to produce a twin vortex, but with the central plasma flow being generally different in speed from, and almost orthogonal to, the motion of the whole pattern. In this paper, we make use of this distinction to discuss recent observations of vortical flow patterns in the dayside auroral ionosphere in terms of one or other of the proposed mechanisms. We conclude that some of the observations reported are consistent only with the predicted signature of FTEs. We then evaluate the dimensions of the open flux tubes required to explain some recent simultaneous radar and auroral observations and infer that they are typically 300 km in north–south extent but up to 2000 km in longitudinal extent (i.e., roughly 5 hours of MLT). Hence these observations suggest that recent theories of FTEs which invoke time-varying reconnection at an elongated neutral line may be correct. We also present some simultaneous observations of the interplanetary magnetic field (IMF) and solar wind dynamic pressure (observed using the IMP8 satellite) and the ionospheric flow (observed using the EISCAT radar) which are also only consistent with the FTE model. We estimate that for continuously southward IMF ( ≈ 5 nT) these FTEs contribute about 30 kV to the mean total transpolar voltage (∼30%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of case studies of large, transient, field-aligned ion flows in the topside ionosphere at high-latitudes have been reported, showing that these events occur during periods of frictional heating and/or intense particle precipitation. This study examines the frequency of occurrence of such events for the altitude range 200–500 km, based on 3 years of incoherent scatter data. Correlations of the upgoing ion flux at 400 km with ion and electron temperatures at lower altitudes are presented, together with a discussion of possible mechanisms for the production of such large flows. The influence of low-altitude electron precipitation on the production of these events is also considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present observations of a transient event in the dayside auroral ionosphere at magnetic noon. F-region plasma convection measurements were made by the EISCAT radar, operating in the beamswinging “Polar” experiment mode, and simultaneous observations of the dayside auroral emissions were made by optical meridian-scanning photometers and all-sky TV cameras at Ny Ålesund, Spitzbergen. The data were recorded on 9 January 1989, and a sequence of bursts of flow, with associated transient aurora, were observed between 08:45 and 11:00 U.T. In this paper we concentrate on an event around 09:05 U.T. because that is very close to local magnetic noon. The optical data show a transient intensification and widening (in latitude) of the cusp/cleft region, as seen in red line auroral emissions. Over an interval of about 10 min, the band of 630 nm aurora widened from about 1.5° of invariant latitude to over 5° and returned to its original width. Embedded within the widening band of 630 nm emissions were two intense, active 557.7 nm arc fragments with rays which persisted for about 2 min each. The flow data before and after the optical transient show eastward flows, with speeds increasing markedly with latitude across the band of 630 nm aurora. Strong, apparently westward, flows appeared inside the band while it was widening, but these rotated round to eastward, through northward, as the band shrunk to its original width. The observed ion temperatures verify that the flow speeds during the transient were, to a large extent, as derived using the beamswinging technique; but they also show that the flow increase initially occurred in the western azimuth only. This spatial gradient in the flow introduces ambiguity in the direction of these initial flows and they could have been north-eastward rather than westward. However, the westward direction derived by the beamswinging is consistent with the motion of the colocated and coincident active 557.7 nm arc fragment, A more stable transient 557.7 nm aurora was found close to the shear between the inferred westward flows and the persisting eastward flows to the North. Throughout the transient, northward flow was observed across the equatorward boundary of the 630 nm aurora. Interpretation of the data is made difficult by lack of IMF data, problems in distinguishing the cusp and cleft aurora and uncertainty over which field lines are open and which are closed. However, at magnetic noon there is a 50% probability that we were observing the cusp, in which case from its southerly location we infer that the IMF was southward and many features are suggestive of time-varying reconnection at a single X-line on the dayside magnetopause. This IMF orientation is also consistent with the polar rain precipitation observed simultaneously by the DMSP-F9 satellite in the southern polar cap. There is also a 25% chance that we were observing the cleft (or the mantle poleward of the cleft). In this case we infer that the IMF was northward and the transient is well explained by reconnection which is not only transient in time but occurs at various sites located randomly on the dayside magnetopause (i.e. patchy in space). Lastly, there is a 25% chance that we were observing the cusp poleward of the cleft, in which case we infer that IMF Bz was near zero and the transient is explained by a mixture of the previous two interpretations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent observations at the magnetopause and of the high-latitude ionosphere, suggest that the cusp may be pulsed in nature. Specifically ground-based observations in the dayside auroral oval reveal transient optical features accompanied by bursts of enhanced plasma flow. Also, recent interpretation has shown cusp satellite data to be consistent with a burst of enhanced reconnection. In this paper we use these observations to produce a scenario in which both the satellite and ground-based observations can be fitted. The scenario we develop is based on the flux transfer event (FTE) models of Southwood et al. and Scholer and shows that the signatures, at both low and high altitudes, can be interpreted in terms of FTEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combined observations by meridian-scanning photometers, all-sky auroral TV camera and the EISCAT radar permitted a detailed analysis of the temporal and spatial development of the midday auroral breakup phenomenon and the related ionospheric ion flow pattern within the 71°–75° invariant latitude radar field of view. The radar data revealed dominating northward and westward ion drifts, of magnitudes close to the corresponding velocities of the discrete, transient auroral forms, during the two different events reported here, characterized by IMF |BY/BZ| < 1 and > 2, respectively (IMF BZ between −8 and −3 nT and BY > 0). The spatial scales of the discrete optical events were ∼50 km in latitude by ∼500 km in longitude, and their lifetimes were less than 10 min. Electric potential enhancements with peak values in the 30–50 kV range are inferred along the discrete arc in the IMF |BY/BZ| < 1 case from the optical data and across the latitudinal extent of the radar field of view in the |BY/BZ| > 2 case. Joule heat dissipation rates in the maximum phase of the discrete structures of ∼ 100 ergs cm−2 s−1 (0.1 W m−2) are estimated from the photometer intensities and the ion drift data. These observations combined with the additional characteristics of the events, documented here and in several recent studies (i.e., their quasi-periodic nature, their motion pattern relative to the persistent cusp or cleft auroral arc, the strong relationship with the interplanetary magnetic field and the associated ion drift/E field events and ground magnetic signatures), are considered to be strong evidence in favour of a transient, intermittent reconnection process at the dayside magnetopause and associated energy and momentum transfer to the ionosphere in the polar cusp and cleft regions. The filamentary spatial structure and the spectral characteristics of the optical signature indicate associated localized ˜1-kV potential drops between the magnetopause and the ionosphere during the most intense auroral events. The duration of the events compares well with the predicted characteristic times of momentum transfer to the ionosphere associated with the flux transfer event-related current tubes. It is suggested that, after this 2–10 min interval, the sheath particles can no longer reach the ionosphere down the open flux tube, due to the subsequent super-Alfvénic flow along the magnetopause, conductivities are lower and much less momentum is extracted from the solar wind by the ionosphere. The recurrence time (3–15 min) and the local time distribution (∼0900–1500 MLT) of the dayside auroral breakup events, combined with the above information, indicate the important roles of transient magnetopause reconnection and the polar cusp and cleft regions in the transfer of momentum and energy between the solar wind and the magnetosphere.