993 resultados para inverse problem
Resumo:
"Contract AF33(616)-6079 Project No. 9-(13-6278), Task No. 40572. Sponsored by: Aeronautical Systems Division"
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional inverse Stefan problem for the heat equation by extending the MFS proposed in [5] for the one-dimensional direct Stefan problem. The sources are placed outside the space domain of interest and in the time interval (-T, T). Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate and stable results can be obtained efficiently with small computational cost.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional parabolic inverse Cauchy–Stefan problem, where boundary data and the initial condition are to be determined from the Cauchy data prescribed on a given moving interface. In [B.T. Johansson, D. Lesnic, and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan Problem, Appl. Math Model. 35 (2011), pp. 4367–4378], the inverse Stefan problem was considered, where only the boundary data is to be reconstructed on the fixed boundary. We extend the MFS proposed in Johansson et al. (2011) and show that the initial condition can also be simultaneously recovered, i.e. the MFS is appropriate for the inverse Cauchy-Stefan problem. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be efficiently obtained with small computational cost.
Resumo:
Direct sampling methods are increasingly being used to solve the inverse medium scattering problem to estimate the shape of the scattering object. A simple direct method using one incident wave and multiple measurements was proposed by Ito, Jin and Zou. In this report, we performed some analytic and numerical studies of the direct sampling method. The method was found to be effective in general. However, there are a few exceptions exposed in the investigation. Analytic solutions in different situations were studied to verify the viability of the method while numerical tests were used to validate the effectiveness of the method.
Resumo:
Il problema inverso di Galois classico consiste nel chiedersi se, dato un gruppo finito G, esista una estensione di Galois del campo dei numeri razionali che abbia come gruppo di Galois il gruppo G. Una volta verificata l'esistenza di una tale estensione poi, si cercano polinomi a coefficienti razionali il cui gruppo di Galois sia G stesso. Noto dall'inizio del diciannovesimo secolo, il problema è tuttora in generale irrisolto, nonostante nel corso degli anni siano stati fatti notevoli progressi. In questa tesi il problema viene affrontato e risolto in alcuni casi particolari: viene mostrata la realizzazione dei gruppi ciclici, dei gruppi abeliani e dei gruppi simmetrici come gruppi di Galois sul campo dei razionali, e vengono dati alcuni esempi di polinomi con tali gruppi di Galois.
Resumo:
This paper describes a hybrid numerical method of an inverse approach to the design of compact magnetic resonance imaging magnets. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first, kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. The emphasis of this work is on the optimal design of short MRI magnets. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric MRI magnets as well as asymmetric magnets. The results highlight that the method can be used to obtain a compact MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1 m in length, significantly shorter than current designs. Viable asymmetric magnet designs, in which the edge of the homogeneous region is very close to one end of the magnet system are also presented. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)00303-5].
Resumo:
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Resumo:
The inversion problem concerning the windowed Fourier transform is considered. It is shown that, out of the infinite solutions that the problem admits, the windowed Fourier transform is the "optimal" solution according to a maximum-entropy selection criterion.
Resumo:
The relation between limit cycles of planar differential systems and the inverse integrating factor was first shown in an article of Giacomini, Llibre and Viano appeared in 1996. From that moment on, many research articles are devoted to the study of the properties of the inverse integrating factor and its relationwith limit cycles and their bifurcations. This paper is a summary of all the results about this topic. We include a list of references together with the corresponding related results aiming at being as much exhaustive as possible. The paper is, nonetheless, self-contained in such a way that all the main results on the inverse integrating factor are stated and a complete overview of the subject is given. Each section contains a different issue to which the inverse integrating factor plays a role: the integrability problem, relation with Lie symmetries, the center problem, vanishing set of an inverse integrating factor, bifurcation of limit cycles from either a period annulus or from a monodromic ω-limit set and some generalizations.
Resumo:
Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free
Resumo:
Interior illumination is a complex problem involving numerous interacting factors. This research applies genetic programming towards problems in illumination design. The Radiance system is used for performing accurate illumination simulations. Radiance accounts for a number of important environmental factors, which we exploit during fitness evaluation. Illumination requirements include local illumination intensity from natural and artificial sources, colour, and uniformity. Evolved solutions incorporate design elements such as artificial lights, room materials, windows, and glass properties. A number of case studies are examined, including many-objective problems involving up to 7 illumination requirements, the design of a decorative wall of lights, and the creation of a stained-glass window for a large public space. Our results show the technical and creative possibilities of applying genetic programming to illumination design.
Resumo:
Electromagnetic tomography has been applied to problems in nondestructive evolution, ground-penetrating radar, synthetic aperture radar, target identification, electrical well logging, medical imaging etc. The problem of electromagnetic tomography involves the estimation of cross sectional distribution dielectric permittivity, conductivity etc based on measurement of the scattered fields. The inverse scattering problem of electromagnetic imaging is highly non linear and ill posed, and is liable to get trapped in local minima. The iterative solution techniques employed for computing the inverse scattering problem of electromagnetic imaging are highly computation intensive. Thus the solution to electromagnetic imaging problem is beset with convergence and computational issues. The attempt of this thesis is to develop methods suitable for improving the convergence and reduce the total computations for tomographic imaging of two dimensional dielectric cylinders illuminated by TM polarized waves, where the scattering problem is defmed using scalar equations. A multi resolution frequency hopping approach was proposed as opposed to the conventional frequency hopping approach employed to image large inhomogeneous scatterers. The strategy was tested on both synthetic and experimental data and gave results that were better localized and also accelerated the iterative procedure employed for the imaging. A Degree of Symmetry formulation was introduced to locate the scatterer in the investigation domain when the scatterer cross section was circular. The investigation domain could thus be reduced which reduced the degrees of freedom of the inverse scattering process. Thus the entire measured scattered data was available for the optimization of fewer numbers of pixels. This resulted in better and more robust reconstructions of the scatterer cross sectional profile. The Degree of Symmetry formulation could also be applied to the practical problem of limited angle tomography, as in the case of a buried pipeline, where the ill posedness is much larger. The formulation was also tested using experimental data generated from an experimental setup that was designed. The experimental results confirmed the practical applicability of the formulation.
Resumo:
Aquesta tesi presenta un nou mètode pel disseny invers de reflectors. Ens hem centrat en tres temes principals: l’ús de fonts de llum reals i complexes, la definició d’un algoritme ràpid pel càlcul de la il•luminació del reflector, i la definició d’un algoritme d’optimització per trobar més eficientment el reflector desitjat. Les fonts de llum estan representades per models near-field, que es comprimeixen amb un error molt petit, fins i tot per fonts de llum amb milions de raigs i objectes a il•luminar molt propers. Llavors proposem un mètode ràpid per obtenir la distribució de la il•luminació d’un reflector i la seva comparació amb la il•luminació desitjada, i que treballa completament en la GPU. Finalment, proposem un nou mètode d’optimització global que permet trobar la solució en menys passos que molts altres mètodes d’optimització clàssics, i alhora evitant mínims locals.
Resumo:
The goal of the review is to provide a state-of-the-art survey on sampling and probe methods for the solution of inverse problems. Further, a configuration approach to some of the problems will be presented. We study the concepts and analytical results for several recent sampling and probe methods. We will give an introduction to the basic idea behind each method using a simple model problem and then provide some general formulation in terms of particular configurations to study the range of the arguments which are used to set up the method. This provides a novel way to present the algorithms and the analytic arguments for their investigation in a variety of different settings. In detail we investigate the probe method (Ikehata), linear sampling method (Colton-Kirsch) and the factorization method (Kirsch), singular sources Method (Potthast), no response test (Luke-Potthast), range test (Kusiak, Potthast and Sylvester) and the enclosure method (Ikehata) for the solution of inverse acoustic and electromagnetic scattering problems. The main ideas, approaches and convergence results of the methods are presented. For each method, we provide a historical survey about applications to different situations.
Resumo:
Six parameters uniquely describe the orbit of a body about the Sun. Given these parameters, it is possible to make predictions of the body's position by solving its equation of motion. The parameters cannot be directly measured, so they must be inferred indirectly by an inversion method which uses measurements of other quantities in combination with the equation of motion. Inverse techniques are valuable tools in many applications where only noisy, incomplete, and indirect observations are available for estimating parameter values. The methodology of the approach is introduced and the Kepler problem is used as a real-world example. (C) 2003 American Association of Physics Teachers.