199 resultados para interxylary meristem
Resumo:
Background: It had long been thought that a lateral meristem, the so-called primary thickening meristem (PTM) was responsible for stem thickening in monocotyledons. Recent work has shown that primary thickening in the stems of monocotyledons is due to the meristematic activity of both the endodermis and the pericycle. Aims: The aim of this work is to answer a set of questions about the developmental anatomy of monocotyledonous plants: (1) Do the stem apices of monocots have a special meristematic tissue, the PTM? (2) Are the primary tissues of the stem the same as those of the root? (3) Is there good evidence for the formation of both the cortex and the vascular tissue from a single meristem, the PTM, in the shoot and from two distinguishable meristems in the root? (4) If the PTM forms only the cortex, what kind of meristem forms the vascular tissue? Methods: Light microscopy was used to examine stem and root anatomy in 16 species from 10 monocotyledonous families. Results: It was observed that radially aligned cortical cells extend outwards from endodermal initial cells in the cortex of the roots and the stems in all the species. The radial gradation in size observed indicates that the cortical cells are derivatives of a meristematic endodermis. In addition, perfect continuity was observed between the endodermis of the root and that of the stem. Meristematic activity in the pericycle gives rise to cauline vascular bundles composed of metaxylem and metaphloem. Conclusion: No evidence was obtained for the existence in monocotyledons of a PTM. Monocotyledons appear to resemble other vascular plants in this respect.
Resumo:
Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.
Resumo:
Die Morphogenese einer Pflanzenzelle wird in großem Maße durch die Dynamik kortikaler Mikrotubuli (MT) bestimmt, die auf die Zellwandsynthese Einfluß nehmen. In dieser Arbeit wurden die Transkriptmengen der alpha-Tubulin-Isotypen und des gamma-Tubulin während der Entwicklung des Gerstenblattes analysiert, um Zusammenhänge zu bereits beschriebenen Umwandlungen im kortikalen MT-Cytoskelett der Mesophyllzellen aufzudecken. Erstmals konnte bei einer höheren Pflanze die Genexpression auf RNA-Ebene innerhalb einer Tubulin-Multigenfamilie im Verlauf der Blattentwicklung umfassend dargestellt werden.Es wurden blattspezifische cDNA-Bibliotheken erstellt und mittels RT-PCR homologe DNA-Gensonden für die Screeningprozesse der cDNA-Bibliotheken hergestellt. cDNA-Sequenzen von alpha-, beta-, und gamma-Tubulin konnten isoliert werden. Weitere, weniger abundante alpha-Tubulin-Sequenzen wurden während zusätzlicher Screeningrunden über PCR-Ausschluß häufig vertretener, bereits bekannter Isotypen isoliert.Die cDNA-Sequenzen von insgesamt fünf verschiedenen Isotypen des alpha-Tubulin konnten aufgeklärt werden, drei Isotypen wiesen bis zu fünf im nicht kodierenden 3´-Bereich verkürzte Varianten auf, die aber in ihrer Anzahl deutlich unterrepräsentiert waren. Die abgeleiteten Aminosäuresequenzen umfassten bei drei Isotypen 451 Aminosäuren (AS), zwei Isotypen waren im C-Terminus um eine bzw. um zwei AS kürzer. Die fünf alpha-Tubulin-Isotypen wiesen charakteristische Expressionsmuster auf, die in drei Klassen unterteilbar waren. Die Isotypen HVATUB1 und HVATUB5 (MT-Band-Isotypen) hatten den maximalen Gehalt in Blattbereichen, in denen auch hauptsächlich Mesophyllzellen mit kortikalen MT-Bänderungen vorkommen, wobei HVATUB5 den am schwächsten exprimierte Isotyp darstellte. HVATUB3 (Random-MT-Isotyp) zeigte die stärksten Expressionsraten. Die im Meristem und meristemnahen Bereichen bereits recht hohe Abundanz erreichte erst nach der Zellstreckungszone in einer Blattzone das Maximum, in dem hauptsächlich Mesophyllzellen mit zerstreut angeordneten MT anzutreffen sind. Die Isotypen HVATUB2 und HVATUB4 (MImax-Isotypen) waren in mitotisch aktiven, basalen Blattbereichen dominant.Die cDNA-Sequenz vom gamma-Tubulin der Gerste, HVGTUB, wurde ermittelt; die abgeleitete Aminosäuresequenz bestand aus 469 AS. Das Auftreten einer im nicht kodierenden 3´-Bereich kürzeren Variante konnte erstmals bei pflanzlichem gamma-Tubulin beschrieben werden. Southernblot-Analysen ließen darauf schließen, daß gamma-Tubulin nur als Einzelkopie im Genom der Gerste vorkommt. gamma-Tubulin wurde im mitosereichen Meristem der Blattbasis am stärksten exprimiert. Da die Abnahme der Transkriptmenge weitaus langsamer verlief als die Abnahme der Zellteilungsaktivität, ist anzunehmen, daß gamma-Tubulin neben der Erfüllung von mitose- und zellteilungsspezifischen Funktionen auch eine Rolle im Zusammenhang mit der Dynamik des kortikalen MT-Cytoskeletts spielt. Einen ersten Schritt zur Aufklärung der Genfamilie des beta-Tubulin bei Gerste stellt die Isolierung drei verschiedener cDNA-Sequenzen von beta-Tubulin dar.
Resumo:
Die Entwicklungsgänge der untersuchten Wurzeln unterscheiden sich beträchtlich. Eine Unterteilung in Teilprozesse hat sich bewährt. Die Entwicklung beginnt mit der Umstimmung, meist erkennbar an der Rematisierung des primordiogenen Areals. Während der anschließenden primären Morphogenese, der Substratbildung, können Teilungsmuster auftreten, die häufig als Anzeichen der beginnenden Differenzierung gewertet werden, tatsächlich aber nur die Formbildung widerspiegeln. Die Differenzierung als primäre Histogenese beginnt erst, wenn das Primordium eine bestimmte Größe erreicht hat.Die Radikula entwickelt sich ohne Remeristematisierung und ohne erkennbare primäre Morphogenese. Erstes Anzeichen ist die Ausbildung besonderer Zellmuster. Sie entsteht durch die Überprägung vorhandenen Substrats.Bei den Grenzwurzeln, die im Gegensatz zu den anderen sekundären Wurzeln einen festen Platz im Bauplan einnehmen, kann die Rematisierung fehlen.Die Größe des remeristematisierten Areals richtet sich meist nach dem zur Verfügung stehenden Substrat. Mitunter kann ein so großes Gewebeareal remeristematisiert werden, daß die Histogenese ohne dazwischengeschaltetes Volumenwachstum erfolgt. Die Zellteilungen haben dann einzig die Funktion, ein kleinzelliges Meristem zu schaffen. Die Entwicklung der Radikula zeigt viele Gemeinsamkeiten mit der sekundärer Wurzeln: Die Radikula ist also keine Sonderbildung, aber eine Wurzel mit Sonderstatus: Sie hebt sich durch ihre extrem frühe Anlegung, ihre axiale Orientierung und die starke Förderung ganz deutlich von den sekundären Wurzeln ab.
Resumo:
Kolumnare Apfelbäume (Malus x domestica) stellen aufgrund ihres auffälligen Phänotyps eine ökonomisch interessante Wuchsform dar. Diese extreme Form des Kurztriebwuchses zeichnet sich durch einen insgesamt sehr schlanken, säulenförmigen Habitus aus, welcher eine dichte Pflanzung und damit einhergehend Ertragssteigerungen im Vergleich zu normalwüchsigen Bäumen ermöglicht. Verursacht wird der Phänotyp durch die Anwesenheit eines einzelnen, dominanten Allels des Columnar (Co)-Gens. Bis auf die approximative Lokalisation des Gens auf Chromosom 10 ist über mögliche Identität und Funktion bislang nichts bekannt.rnIn der vorliegenden Arbeit wurde ein erster Versuch unternommen, mit Hilfe von Next Generation Sequencing (NGS) Technologien und RNA-Seq Einblicke in das Transkriptom des Sprossapikalmeristems (SAM) kolumnarer Apfelbäume zu gewinnen. So konnte gezeigt werden, dass unabhängig vom Zeitpunkt der Entnahme des Materials mehrere hundert Gene differentiell reguliert werden. Diese lassen sich funktional in mehrere überrepräsentierte Kategorien gruppieren, von denen sich einige wiederum mit dem kolumnaren Phänotyp assoziieren lassen. Durch den Einsatz weiterer Expressionsstudien (Microarrays, qRT-PCR) konnten frühere Ergebnisse bezüglich des Hormonhaushalts auf Genebene bestätigt und neue Erkenntnisse gewonnen werden, die eine mögliche Erklärung für den Phänotyp darstellen. Weiterhin ergab der Vergleich aller durchgeführten Expressionsstudien eine Anreicherung signifikant differentiell regulierter Gene auf Chromosom 10, was auf einen „selective sweep“ hindeutet. Eine potentielle epigenetische Regulation dieser Gene durch das Genprodukt von Co könnte daher möglich sein. Mehr als die Hälfte dieser Gene lassen sich darüber hinaus aufgrund ihrer Funktion direkt mit dem kolumnaren Phänotyp assoziieren.rnDiese Ergebnisse zeigen, dass die Anwesenheit des Co-Allels massive Veränderungen in der Genregulation des SAMs mit sich bringt, wobei einige dieser differentiell regulierten Gene mit großer Wahrscheinlichkeit an der Etablierung des kolumnaren Phänotyps beteiligt sind. Auch wenn die Funktion des Co-Genproduktes nicht abschließend geklärt werden konnte, sind doch anhand der Resultate schlüssige Hypothesen diesbezüglich möglich.rn
Resumo:
Wood formation is an economically and environmentally important process and has played a significant role in the evolution of terrestrial plants. Despite its significance, the molecular underpinnings of the process are still poorly understood. We have previously shown that four Lateral Boundary Domain (LBD) transcription factors have important roles in the regulation of wood formation with two (LBD1 and LBD4) involved in secondary phloem and ray cell development and two (LBD15 and LBD18) in secondary xylem formation. Here, we used comparative phylogenetic analyses to test potential roles of the four LBD genes in the evolution of woodiness. We studied the copy number and variation in DNA and amino acid sequences of the four LBDs in a wide range of woody and herbaceous plant taxa with fully sequenced and annotated genomes. LBD1 showed the highest gene copy number across the studied species, and LBD1 gene copy number was strongly and significantly correlated with the level of ray seriation. The lianas, cucumber and grape, with multiseriate ray cells showed the highest gene copy number (12 and 11, respectively). Because lianas’ growth habit requires significant twisting and bending, the less lignified ray parenchyma cells likely facilitate stem flexibility and maintenance of xylem conductivity. We further demonstrate conservation of amino acids in the LBD18 protein sequences that are specific to woody taxa. Neutrality tests showed evidence for strong purifying selection on these gene regions across various orders, indicating adaptive convergent evolution of LBD18. Structural modeling demonstrates that the conserved amino acids have a significant impact on the tertiary protein structure and thus are likely of significant functional importance.
Resumo:
Leaves are arranged according to regular patterns, a phenomenon referred to as phyllotaxis. Important determinants of phyllotaxis are the divergence angle between successive leaves, and the size of the leaves relative to the shoot axis. Young leaf primordia are thought to provide positional information to the meristem, thereby influencing the positioning of new primordia and hence the divergence angle. On the contrary, the meristem signals to the primordia to establish their dorsoventral polarity, which is a prerequisite for the formation of a leaf blade. These concepts originate from classical microsurgical studies carried out between the 1920s and the 1970s. Even though these techniques have been abandoned in favor of genetic analysis, the resulting insights remain a cornerstone of plant developmental biology. Here, we employ new microsurgical techniques to reassess and extend the classical studies on phyllotaxis and leaf polarity. Previous experiments have indicated that the isolation of an incipient primordium by a tangential incision caused a change of divergence angle between the two subsequent primordia, indicating that pre-existing primordia influence further phyllotaxis. Here.. we repeat these experiments and compare them with the results of laser ablation of incipient primordia. Furthermore. we explore to what extent the different pre-existing primordia influence the size and position of new organs. and hence phyllotaxis. We propose that the two youngest primordia (P-1 and P-2) are sufficient for the approximate positioning of the incipient primordium (I-1), and therefore for the perpetuation of the generative spiral, whereas the direct contact neighbours of I-1 (P-2 and P-3) control its delimitation and hence its exact size and position. Finally. we report L I specific cell ablation experiments suggesting that the meristem L-1 layer is essential for the dorsoventral patterning of leaf primordia.
Resumo:
Plant infections by the soil bacterium Agrobacterium rhizogenes result in neoplastic disease with the formation of hairy roots at the site of infection. Expression of a set of oncogenes residing on the stably integrated T-DNA is responsible for the disease symptoms. Besides the rol (root locus) genes, which are essential for the formation of hairy roots, the open reading frame orf13 mediates cytokinin-like effects, suggesting an interaction with hormone signaling pathways. Here we show that ORF13 induced ectopic expression of KNOX (KNOTTED1-like homeobox) class transcription factors, as well as of several genes involved in cell cycle control in tomato (Lycopersicon esculentum). ORF13 has a retinoblastoma (RB)-binding motif and interacted with maize (Zea mays) RB in vitro, whereas ORF13, bearing a point mutation in the RB-binding motif (ORF13*), did not. Increased cell divisions in the vegetative shoot apical meristem and accelerated formation of leaf primordia were observed in plants expressing orf13, whereas the expression of orf13* had no influence on cell division rates in the shoot apical meristem, suggesting a role of RB in the regulation of the cell cycle in meristematic tissues. On the other hand, ectopic expression of LeT6 was not dependent on a functional RB-binding motif. Hormone homeostasis was only altered in explants of leaves, whereas in the root no effects were observed. We suggest that ORF13 confers meristematic competence to cells infected by A. rhizogenes by inducing the expression of KNOX genes and promotes the transition of infected cells from the G1 to the S phase by binding to RB.
Resumo:
The regular arrangement of leaves around a plant's stem, called phyllotaxis, has for centuries attracted the attention of philosophers, mathematicians and natural scientists; however, to date, studies of phyllotaxis have been largely theoretical. Leaves and flowers are formed from the shoot apical meristem, triggered by the plant hormone auxin. Auxin is transported through plant tissues by specific cellular influx and efflux carrier proteins. Here we show that proteins involved in auxin transport regulate phyllotaxis. Our data indicate that auxin is transported upwards into the meristem through the epidermis and the outermost meristem cell layer. Existing leaf primordia act as sinks, redistributing auxin and creating its heterogeneous distribution in the meristem. Auxin accumulation occurs only at certain minimal distances from existing primordia, defining the position of future primordia. This model for phyllotaxis accounts for its reiterative nature, as well as its regularity and stability.
Resumo:
Expansins are members of a multigene family of extracellular proteins, which increase cell wall extensibility in vitro and thus are thought to be involved in cell expansion. The major significance of the presence of this large gene family may be that distinctly expressed genes can independently regulate cell expansion in place and time. Here we report on LeExp9, a new expansin gene from tomato, and compare its expression in the shoot tip with that of LeExp2 and LeExp18. LeExp18 gene is expressed in very young tissues of the tomato shoot apex and the transcript levels are upregulated in the incipient primordium. LeExp2 mRNA accumulated in more mature tissues and transcript levels correlated with cell elongation in the elongation zone. In situ hybridization experiments showed a uniform distribution of LeExp9 mRNA in submeristematic tissues. When gibberellin-deficient mutant tomatoes that lacked elongation of the internodes were treated with gibberellin, the phenotypic rescue was correlated with an increase in LeExp9 and LeExp2, but not LeExp18 levels. We propose that the three expansins define three distinct growing zones in the shoot tip. In the meristem proper, gibberellin-independent LeExp18 mediates the cell expansion that accompanies cell division. In the submeristematic zone, LeExp9 mediates cell expansion at a time that cell division comes to a halt. LeExp9 expression requires gibberellin but the hormone is not normally limiting. Finally, LeExp2 mediates cell elongation in young stem tissue. LeExp2 expression is limited by the available gibberellin. These data suggest that regulation of cell wall extensibility is controlled, at least in part, by differential regulation of expansin genes.
Resumo:
Plants exhibit life-long organogenic and histogenic activity in a specialised organ, the shoot apical meristem. Leaves and flowers are formed within the ring-shaped peripheral zone, which surrounds the central zone, the site of the stem cells. We have undertaken a series of high-precision laser ablation and microsurgical tissue removal experiments to test the functions of different parts of the tomato meristem, and to reveal their interactions. Ablation of the central zone led to ectopic expression of the WUSCHEL gene at the periphery, followed by the establishment of a new meristem centre. After the ablation of the central zone, organ formation continued without a lag. Thus, the central zone does not participate in organogenesis, except as the ultimate source of founder cells. Microsurgical removal of the external L-1 layer induced periclinal cell divisions and terminal differentiation in the subtending layers. In addition, no organs were initiated in areas devoid of L-1, demonstrating an important role of the L-1 in organogenesis. L-1 ablation had only local effects, an observation that is difficult to reconcile with phyllotaxis theories that invoke physical tension operating within the meristem as a whole. Finally, regeneration of L-1 cells was never observed after ablation. This shows that while the zones of the meristem show a remarkable capacity to regenerate after interference, elimination of the L-1 layer is irreparable and causes terminal differentiation.
Resumo:
Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.
Resumo:
Plant architecture is species specific, indicating that it is under strict genetic control. Although it is also influenced by environmental conditions such as light, temperature, humidity and nutrient status, here we wish to focus only on the endogenous regulatory principles that control plant architecture. We summarise recent progress in the understanding of the basic patterning mechanisms involved in the regulation of leaf arrangement, the genetic regulation of meristem determinacy, i.e. the decision to stop or continue growth, and the control of branching during vegetative and generative development. Finally, we discuss the basis of leaf architecture and the role of cell division and cell growth in morphogenesis.
Resumo:
Drought strongly influences root activities in crop plants and weeds. This paper is focused on the performance of the heavy metal accumulator Solanum nigrum, a plant which might be helpful for phytoremediation. The water potential in a split root system was decreased by the addition of polyethylene glycol (PEG 6000). Rubidium, strontium and radionuclides of heavy metals were used as markers to investigate the uptake into roots, the release to the shoot via the xylem, and finally the basipetal transport via the phloem to unlabeled roots. The uptake into the roots (total contents in the plant) was for most makers more severely decreased than the transport to the shoot or the export from the shoot to the unlabeled roots via the phloem. Regardless of the water potential in the labeling solution, 63Ni and 65Zn were selectively redistributed within the plant. From autoradiographs, it became evident that 65Zn accumulated in root tips, in the apical shoot meristem and in axillary buds, while 63Ni accumulated in young expanded leaves and roots but not in the meristems. Since both radionuclides are mobile in the phloem and are, therefore, well redistributed within the plant, the unequal transfer to shoot and root apical meristems is most likely caused by differences in the cell-to-cell transport in differentiation zones without functional phloem (immature sieve tubes).
Resumo:
Plant architecture is characterized by a high degree of regularity. Leaves, flowers and floral organs are arranged in regular patterns, a phenomenon referred to as phyllotaxis. Regular phyllotaxis is found in virtually all higher plants, from mosses, over ferns, to gymnosperms and angiosperms. Due to its remarkable precision, its beauty and its accessibility, phyllotaxis has for centuries been the object of admiration and scientific examination. There have been numerous hypotheses to explain the nature of the mechanistic principle behind phyllotaxis, however, not all of them have been amenable to experimental examination. This is due mainly to the delicacy and small size of the shoot apical meristem, where plant organs are formed and the phyllotactic patterns are laid down. Recently, the combination of genetics, molecular tools and micromanipulation has resulted in the identification of auxin as a central player in organ formation and positioning. This paper discusses some aspects of phyllotactic patterns found in nature and summarizes our current understanding of the regulatory mechanism behind phyllotaxis.