984 resultados para intercalated clays


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The appearance of ferromagnetic correlations among π electrons of phenanthrene (C14H10) molecules in the herringbone structure is proven for K doped clusters both by ab initio quantum-chemistry calculations and by the direct solution of the many-body Pariser-Parr-Pople Hamiltonian. Magnetic ground states are predicted for one or three additional electrons per phenanthrene molecule. These results are a consequence of the small overlap between the lowest unoccupied molecular orbitals (and lowest unoccupied molecular orbitals + 1) of neutral neighboring phenanthrene molecules, which makes the gain in energy by delocalization similar to the corresponding increase due to the Coulomb interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M–Na) and copper cation (M–Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M–Cu changes depending on the inorganic cation and the polymer intercalated in the M–Cu structure. TGA analyses reveal that polymer/M–Cu composites is less stable than M–Cu. The conductivity of the composites is found to be 103 times higher than that for M–Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV–Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method was used to synthesize poly(2-aminophenol), poly(2-aminophenol-co-Aniline) and polyaniline nanocomposites with sodium-montmorillonite (Na-M) using in situ intercalative oxidative polymerization. Morphology and thermal properties of the synthesized nanocomposites were examined by transmission electron microscopy (TEM) and thermogravimetric analysis. The thermal analysis shows an improved thermal stability of the nanocomposites in comparison with the pure poly(2-aminophenol). The intercalation of polymers into the clay layers was confirmed by X-ray diffraction studies, TEM images and FTIR spectroscopy. In addition, the room temperature conductivity values of these nanocomposites varied between 8.21 × 10−5 and 6.76 × 10−4 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites, has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization into Na-M produces electroactive polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were recovered in Berriasian to Valanginian hemipelagic sediments of the Wombat Plateau (Site 761) and southern Exmouth Plateau (Site 763). They are compared to coeval bentonites in eupelagic sediments of the adjacent Argo Abyssal Plain (Sites 261 and 765) and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with dacitic to rhyolitic ash as parent material is suggested by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, and long-prismatic zircon), and volcanic rock fragments, and by a vitroclastic ultrafabric (smectitized glass shards). We distinguish (1) pure smectite bentonites with a white, pink, or light gray color, a waxy appearance, and a very homogeneous, cryptocrystalline smectite matrix (water-free composition at Site 761: 68.5% SiO2, 0.27% TiO2, 19.1% Al2O3, 3.3% Fe2O3, 0.4%-1.1% Na2O, and 0.6% K2O) and (2) impure bentonitic claystones containing mixtures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components. The ash layers were progressively altered during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally completely homogenized to a pure smectite matrix without obvious relict structures. Euhedral clinoptilolite is the latest pore-filling or glass-replacing mineral, postdating smectite authigenesis. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include the Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau into the adjacent abyssal plains. The Wombat Plateau bentonites are interpreted as proximal ash turbidites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to study the mobility and budget of Fe isotopes in the oceanic crust and in particular during low-temperature interaction of seawater with oceanic basalt. We carried out this investigation using samples from Ocean Drilling Program (ODP) Site 801C drilled during Leg 129 and Leg 185 in Jurassic Pacific oceanic crust seaward of the Mariana Trench. The site comprises approximately 450 m of sediment overlying a section of 500 m of basalt, which includes intercalated pelagic and chemical sediments in the upper basaltic units and two low-temperature (10-30°C) ocherous Si-Fe hydrothermal deposits. Fe was chemically separated from 70 selected samples, and 57Fe/54Fe ratios were measured by MC-ICP-MS Isoprobe. The isotopic ratios were measured relative to an internal standard solution and are reported relative to the international Fe-standard IRMM-14. Based on duplicate measurements of natural samples, an external precision of 0.2? (2 sigma) has been obtained. The results indicate that the deep-sea sediment section has a restricted range of d57Fe, which is close to the igneous rock value. In contrast, large variations are observed in the basaltic section with positive d57Fe values (up to 2.05?) for highly altered basalts and negative values (down to ?2.49?) for the associated alteration products and hydrothermal deposits. Secondary Fe-minerals, such as Fe-oxyhydroxides or Fe-bearing clays (celadonite and saponite), have highly variable d57Fe values that have been interpreted as resulting from the partial oxidation of Fe(2+) leached during basalt alteration and precipitated as Fe(3+)-rich minerals. In contrast, altered basalts at Site 801C, which are depleted in Fe (up to 80%), display an increase in d57Fe values relative to fresh values, which suggest a preferential leaching of light iron during alteration. The apparent fractionation factor between dissolved Fe(2+) and Fe remaining in the mineral is from 0.5? to 1.3? and may be consistent with a kinetic isotope fractionation where light Fe is stripped from the minerals. Alternatively, the formation of secondary clays minerals, such as celadonite during basalt alteration may incorporate preferentially the heavy Fe isotopes, resulting in the loss of light Fe isotopes in the fluids. Because microbial processes within the oceanic crust are of potential importance in controlling rates of chemical reactions, Fe redox state and Fe-isotope fractionation, we evaluated the possible effect of this deep biosphere on Fe-isotope signatures. The Fe-isotope systematics presented in this study suggest that, even though iron behavior during seafloor weathering may be mediated by microbes, such as iron-oxidizers, d57Fe variations of more than 4? may also be explained by abiotic processes. Further laboratory experiments are now required to distinguish between various processes of Fe-isotope fractionation during seafloor weathering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"This report represents a cooperative study between the Bureau of mines, Department of commerce, and the College of mines, University of Washington."