975 resultados para integrin alpha v beta 3
Resumo:
Echicetin, a heterodimeric protein from the venom of Echis carinatus, binds to platelet glycoprotein Ib (GPIb) and so inhibits platelet aggregation or agglutination induced by various platelet agonists acting via GPIb. The amino acid sequence of the beta subunit of echicetin has been reported and found to belong to the recently identified snake venom subclass of the C-type lectin protein family. Echicetin alpha and beta subunits were purified. N-terminal sequence analysis provided direct evidence that the protein purified was echicetin. The paper presents the complete amino acid sequence of the alpha subunit and computer models of the alpha and beta subunits. The sequence of alpha echicetin is highly similar to the alpha and beta chains of various heterodimeric and homodimeric C-type lectins. Neither of the fully reduced and alkylated alpha or beta subunits of echicetin inhibited the platelet agglutination induced by von Willebrand factor-ristocetin or alpha-thrombin. Earlier reports about the inhibitory activity of reduced and alkylated echicetin beta subunit might have been due to partial reduction of the protein.
Resumo:
Cardiovascular diseases involve abnormal cell-cell interactions leading to the development of atherosclerotic plaque, which when ruptured causes massive platelet activation and thrombus formation. Parts of a loose thrombus may detach to form an embolus, blocking circulation at a more distant point. The integrins are a family of adhesive cell receptors interacting with adhesive proteins or with counterreceptors on other cells. There is now solid evidence that the major integrin on platelets, the fibrinogen receptor alpha IIb beta 3, has an important role in several aspects of cardiovascular diseases and that its regulated inhibition leads to a reduction in incidence and mortality due to these disorders. The development of alpha IIb beta 3 inhibitors is an important strategy of many pharmaceutical companies which foresee a large market for the treatment of acute conditions in surgery, the symptoms of chronic conditions and, it is hoped, maybe even the successful prophylaxis of these conditions. Although all the associated problems have not been solved, the undoubted improvements in patient care resulting from the first of these treatments in the clinic have stimulated further research on the role of integrins on other vascular cells in these processes and in the search for new inhibitors. Both the development of specific inhibitors and of mice with specific integrin subunit genes ablated have contributed to a better understanding of the function of integrins in development of the cardiovascular system.
Resumo:
BACKGROUND Cardiac sodium channel β-subunit mutations have been associated with several inherited cardiac arrhythmia syndromes. OBJECTIVE To identify and characterize variations in SCN1Bb associated with Brugada syndrome (BrS) and sudden infant death syndrome (SIDS). METHODS All known exons and intron borders of the BrS-susceptibility genes were amplified and sequenced in both directions. Wild type (WT) and mutant genes were expressed in TSA201 cells and studied using co-immunoprecipitation and whole-cell patch-clamp techniques. RESULTS Patient 1 was a 44-year-old man with an ajmaline-induced type 1 ST-segment elevation in V1 and V2 supporting the diagnosis of BrS. Patient 2 was a 62-year-old woman displaying a coved-type BrS electrocardiogram who developed cardiac arrest during fever. Patient 3 was a 4-month-old female SIDS case. A R214Q variant was detected in exon 3A of SCN1Bb (Na(v)1B) in all three probands, but not in any other gene previously associated with BrS or SIDS. R214Q was identified in 4 of 807 ethnically-matched healthy controls (0.50%). Co-expression of SCN5A/WT + SCN1Bb/R214Q resulted in peak sodium channel current (I(Na)) 56.5% smaller compared to SCN5A/WT + SCN1Bb/WT (n = 11-12, P<0.05). Co-expression of KCND3/WT + SCN1Bb/R214Q induced a Kv4.3 current (transient outward potassium current, I(to)) 70.6% greater compared with KCND3/WT + SCN1Bb/WT (n = 10-11, P<0.01). Co-immunoprecipitation indicated structural association between Na(v)β1B and Na(v)1.5 and K(v)4.3. CONCLUSION Our results suggest that R214Q variation in SCN1Bb is a functional polymorphism that may serve as a modifier of the substrate responsible for BrS or SIDS phenotypes via a combined loss of function of sodium channel current and gain of function of transient outward potassium current.
Resumo:
AIMS Loss-of-function mutations in the SCN5A-encoded sodium channel SCN5A or Nav1.5 have been identified in idiopathic ventricular fibrillation (IVF) in the absence of Brugada syndrome phenotype. Nav1.5 is regulated by four sodium channel auxiliary beta subunits. Here, we report a case with IVF and a novel mutation in the SCN3B-encoded sodium channel beta subunit Navbeta3 that causes a loss of function of Nav1.5 channels in vitro. METHODS AND RESULTS Comprehensive open reading frame mutational analysis of KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, GPD1L, four sodium channel beta subunit genes (SCN1-4B), and targeted scan of RYR2 was performed. A novel missense mutation, Navbeta3-V54G, was identified in a 20-year-old male following witnessed collapse and defibrillation from VF. The ECG exhibited epsilon waves, and imaging studies demonstrated a structurally normal heart. The mutated residue was highly conserved across species, localized to the Navbeta3 extracellular domain, and absent in 800 reference alleles. We found that HEK-293 cells had endogenous Navbeta3, but COS cells did not. Co-expression of Nav1.5 with Navbeta3-V54G (with or without co-expression of the Navbeta1 subunit) in both HEK-293 cells and COS cells revealed a significant decrease in peak sodium current and a positive shift of inactivation compared with WT. Co-immunoprecipitation experiments showed association of Navbeta3 with Nav1.5, and immunocytochemistry demonstrated a dramatic decrease in trafficking to the plasma membrane when co-expressed with mutant Navbeta3-V54G. CONCLUSION This study provides molecular and cellular evidence implicating mutations in Navbeta3 as a cause of IVF.
Resumo:
Vertebrates produce at least seven distinct beta-tubulin isotypes that coassemble into all cellular microtubules. The functional differences among these tubulin isoforms are largely unknown, but recent studies indicate that tubulin composition can affect microtubule properties and cellular microtubule-dependent behavior. One of the isotypes whose incorporation causes the largest change in microtubule assembly is beta5-tubulin. Overexpression of this isotype can almost completely destroy the microtubule network, yet it appears to be required in smaller amounts for normal mitotic progression. Moderate levels of overexpression can also confer paclitaxel resistance. Experiments using chimeric constructs and site-directed mutagenesis now indicate that the hypervariable C-terminal region of beta5 plays no role in these phenotypes. Instead, we demonstrate that two residues found in beta5 (Ser-239 and Ser-365) are each sufficient to inhibit microtubule assembly and confer paclitaxel resistance when introduced into beta1-tubulin; yet the single mutation of residue Ser-239 in beta5 eliminates its ability to confer these phenotypes. Despite the high degree of conservation among beta-tubulin isotypes, mutations affecting residue 365 demonstrate that amino acid substitutions can be context sensitive; i.e. an amino acid change in one isotype will not necessarily produce the same phenotype when introduced into a different isotype. Modeling studies indicate that residue Cys-239 of beta1-tubulin is close to a highly conserved Cys-354 residue suggesting the possibility that disulfide formation could play a significant role in the stability of microtubules formed with beta1- but not with beta5-tubulin.
Resumo:
Alpha and beta tubulin are essential proteins in all eukaryotic cells. To study how cells maintain coordinate levels of these two interacting proteins, we have used PCR to add a 9 amino acid epitope from influenza hemagglutinin protein onto the carboxyl terminus of $\alpha$1 and $\beta$1-tubulin. The chimeric tubulin genes (HA$\alpha$1 and HA$\beta$1) were transfected into CHO cells and cell lines that stably express each gene were selected. Cells transfected with HA-tubulin do not exhibit any gross changes in growth or morphology. Immunofluorescence analysis demonstrated that HA-tubulins incorporate into both cytoplasmic and spindle microtubules. A quantitative biochemical assay was used to show that HA-tubulins incorporate into microtubules to a normal extent and do not alter the steady state distribution of endogenous tubulin between monomer and polymer pools. Two-dimensional gel analysis of pulse-labeled cells indicated that when HA$\beta$1-tubulin is expressed at high levels, it slightly represses the synthesis of the endogenous $\beta$-tubulin but produces a small increase in the synthesis of $\alpha$-tubulin. Analysis of cells labeled to steady state showed that HA$\beta$1-tubulin accumulates to a similar level as the wild-type gene product, but together these polypeptides produce only a small increase in total tubulin content consistent with the increased synthesis of $\alpha$-tubulin. It thus appears that HA$\beta$1-tubulin successfully competes with endogenous $\beta$-tubulin for heterodimer formation and that free $\beta$-tubulin subunits (endogenous and HA$\beta$1) are selectively degraded to maintain coordinate amounts of $\alpha$- and $\beta$-tubulin. In addition, the increased synthesis of $\alpha$-tubulin suggested the existence of a mechanism to ensure coordinate synthesis of $\alpha$- and $\beta$-tubulin subunits. To analyze whether reciprocal changes in endogenous tubulin synthesis occur when $\alpha$-tubulin is overexpressed, stably transfected CHO cell lines were isolated in which HA$\alpha$1-tubulin represents 50% of the total $\alpha$-tubulin, and its relative abundance can be further increased to 85-90% by treatment with sodium butyrate. In contrast with results obtained using HA$\beta$1-tubulin, transfection of HA$\alpha$1-tubulin decreased the synthesis of endogenous $\alpha$-tubulin to 60% of normal with little or no change in $\beta$-tubulin synthesis. When the transfected cells were treated with sodium butyrate to further increase HA$\beta$1-tubulin production, a larger decrease in the synthesis of endogenous $\alpha$-tubulin (to 30% of normal) was observed. The repression on the synthesis of endogenous $\alpha$-tubulin polypeptide was found to be directly proportional to the expression of HA$\alpha$1-tubulin indicating the existence of an autoregulatory loop, where $\alpha$-tubulin inhibits its own synthesis. To determine whether overproduction of HA$\alpha$1-tubulin affected the transcription, message stability or translation of endogenous $\alpha$-tubulin, the steady state levels of $\alpha$-tubulin mRNA were analyzed by ribonuclease protection assays. The results showed that the steady state level of $\alpha$-tubulin mRNA is not affected by the overexpression of HA$\alpha$1-tubulin, indicating that the repression is translational. The results are compatible with a model in which $\beta$-tubulin synthesis is largely unperturbed by overexpression of other tubulin subunits, and excess $\beta$-tubulin subunits are rapidly degraded to maintain coordinate $\alpha$- and $\beta$-tubulin levels at steady state. In contrast, free $\alpha$-tubulin represses its own synthesis at the translational level, suggesting that its level of production may be controlled by the amount of $\beta$-tubulin available for heterodimer formation. ^
Resumo:
Welsch (Projektbearbeiter): Bekanntgabe der Wahlbezirke und -lokale anläßlich der Wahl des neuen Wiener Gemeinderates am 2. und 4. Oktober 1848
Resumo:
The mechanisms responsible for anti-cancer drug (including Taxol) treatment failure have not been identified. In cell culture model systems, many β-tubulin, but very few α-tubulin, mutations have been associated with resistance to Taxol. To test what, if any, mutations in α-tubulin can cause resistance, we transfected a randomly mutagenized α-tubulin cDNA into Chinese hamster ovary (CHO) cells and isolated drug resistant cell lines. A total of 12 mutations were identified in this way and all of them were confirmed to confer Taxol resistance. Furthermore, all cells expressing mutant α-tubulin had less microtubule polymer. Some cells also had abnormal nuclei and enlarged cell bodies. The data indicate that α-tubulin mutations confer Taxol resistance by disrupting microtubule assembly, a mechanism consistent with a large number of previously described β-tubulin mutations. ^ Because α- and β-tubulin are almost identical in their three dimensional structure, we hypothesized that mutations discovered in one subunit, when introduced into the other, would produce similar effects on microtubule assembly and drug resistance. 9 α- and 2 β-tubulin mutations were tested. The results were complex. Some mutations produced similar changes in microtubule assembly and drug resistance irrespective of the subunit in which they were introduced, but others produced opposite effects. Still one mutation produced resistance when present in one subunit, yet had no effect when present on the other; and one mutation that produced Taxol resistance when present in α-tubulin, resulted in assembly-defective tubulin when it was present in β-tubulin. The results suggest that in most cases, the same amino acid modification in α- and β-tubulin affects the microtubule structure and assembly in a similar way. ^ Finally, we tested whether three β-tubulin mutations found in patient tumors could confer resistance to Taxol by recreating the mutations in a β-tubulin cDNA and transfecting it into CHO cells. We found that all three mutations conferred Taxol resistance, but to different extents. Again, microtubule assembly in the transfectants was disrupted, suggesting that mutations in β-tubulin are a potential problem in cancer therapeutics. ^
Resumo:
gamma-aminobutyric acid type A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. They are constructed from four subunit classes with multiple members: alpha (1-6), beta (1-4), gamma (1-4), and delta (1). The contribution of subunit diversity in determining receptor subcellular targeting was examined in polarized Madin-Darby canine kidney (MDCK) cells. Significant detection of cell surface homomeric receptor expression by a combination of both immunological and electrophysiological methodologies was only found for the beta 3 subunit. Expression of alpha/beta binary combinations resulted in a nonpolarized distribution for alpha 1 beta 1 complexes, but specific basolateral targeting of both alpha 1 beta 2 and alpha 1 beta 3 complexes. The polarized distribution of these alpha/beta complexes was unaffected by the presence of the gamma 2S subunit. Interestingly, delivery of receptors containing the beta 3 subunit to the basolateral domain occurs via the apical surface. These results show that beta subunits can selectively target GABAA receptors to distinct cellular locations. Changes in the spatial and temporal expression of beta-subunit isoforms may therefore provide a mechanism for relocating GABAA receptor function between distinct neuronal domains. Given the critical role of these receptors in mediating synaptic inhibition, the contribution of different beta subunits in GABAA receptor function, may have implications in neuronal development and for receptor localization/clustering.
Resumo:
To examine the in vivo role(s) of type I interferons (IFNs) and to determine the role of a component of the type I IFN receptor (IFNAR1) in mediating responses to these IFNs, we generated mice with a null mutation (-/-) in the IFNAR1 gene. Despite compelling evidence for modulation of cell proliferation and differentiation by type I IFNs, there were no gross signs of abnormal fetal development or morphological changes in adult IFNAR1-/- mice. However, abnormalities of hemopoietic cells were detected in IFNAR1 -/- mice. Elevated levels of myeloid lineage cells were detected in peripheral blood and bone marrow by staining with Mac-1 and Gr-1 antibodies. Furthermore, bone marrow macrophages from IFNAR1 -/- mice showed abnormal responses to colony-stimulating factor 1 and lipopolysaccharide. IFNAR1 -/- mice were highly susceptible to viral infection: viral titers were undetected 24 hr after infection of IFNAR1 +/+ mice but were extremely high in organs of IFNAR1 -/- mice, demonstrating that the type I IFN system is a major acute antiviral defence. In cell lines derived from IFNAR1 -/- mice, there was no signaling in response to IFN-alpha or -beta as measured by induction of 2'-5' oligoadenylate synthetase, antiviral, or antiproliferative responses. Importantly, these studies demonstrate that type I IFNs function in the development and responses of myeloid lineage cells, particularly macrophages, and that the IFNAR1 receptor component is essential for antiproliferative and antiviral responses to IFN-alpha and -beta.
Resumo:
Protein kinase C (PKC) is involved in the proliferation and differentiation of many cell types. In human erythroleukemia (K-562) cells, the PKC isoforms alpha and beta II play distinct functional roles. alpha PKC is involved in phorbol 12-myristate 13-acetate-induced cytostasis and megakaryocytic differentiation, whereas beta II PKC is required for proliferation. To identify regions within alpha and beta II PKC that allow participation in these divergent pathways, we constructed chimeras in which the regulatory and catalytic domains of alpha and beta II PKC were exchanged. These PKC chimeras can be stably expressed, exhibit enzymatic properties similar to native alpha and beta II PKC in vitro, and participate in alpha and beta II PKC isotype-specific pathways in K-562 cells. Expression of the beta/alpha PKC chimera induces cytostasis in the same manner as overexpression of wild-type alpha PKC. In contrast, the alpha/beta II PKC chimera, like wild-type beta II PKC, selectively translocates to the nucleus and leads to increased phosphorylation of the nuclear envelope polypeptide lamin B in response to bryostatin-1. Therefore, the catalytic domains of alpha and beta II PKC contain determinants important for alpha and beta II PKC isotype function. These results suggest that the catalytic domain represents a potential target for modulating PKC isotype activity in vivo.