981 resultados para insect-plant interactions
Resumo:
The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of biotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs) on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models (SDMs), we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.
Resumo:
Mutualism often involves reciprocal exploitation due to individual selection for increased benefits even at the expense of the partner. Therefore, stability and outcomes of such interactions crucially depend on cost limitation mechanisms. In the plant, pollinator /seed predator interaction between Silene latifolia (Caryophyllaceae) and Hadena bicruris (Lepidoptera: Noctuidae), moths generate pollination benefits as adults but impose seed predation costs as larvae. We examined whether floral morphology limits over-exploitation by constraining oviposition site. Oviposition site varies naturally inside vs. outside the corolla tube, but neither its determinants nor its effect on the interaction have been investigated. In a common garden with plants originating from eight populations, corolla tube length predicted oviposition site, but not egg presence or pollination efficiency, suggesting that long corolla tubes constrain the moth to lay eggs on petals. Egg position was also predicted by the combined effect of corolla tube and moth ovipositor lengths, with shorter ovipositor than corolla tube resulting in higher probability for eggs outside. Egg position on a given plant was repeatable over different exposure nights. When egg position was experimentally manipulated, eggs placed on the petal resulted in significantly fewer successful fruit attacks compared with eggs placed inside the corolla tube, suggesting differences in egg/larval mortality. Egg position also differently affected larval mass, fruit mass and fruit development. Our results indicate that constraining oviposition site through a long corolla tube reduces seed predation costs suffered by the plant without negatively affecting pollination efficiency and, hence may act to limit over-exploitation. However, the net effects of corolla tube depth variation on this interaction may fluctuate with extrinsic factors affecting egg mortality, and with patterns of gene flow affecting trait matching between the interacting species. The intermediate fitness costs incurred by both plant and insect associated with the different egg positions may reduce selective pressures for this interaction to evolve towards antagonism, favouring instead a mutualistic outcome. While a role for oviposition site variation in cost limitation is a novel finding in this system, it may apply more generally also to other mutualisms involving pollinating seed predators.
Resumo:
Abstract: Plants cannot run away to escape attacking herbivores, but they defend themselves by producing anti-digestive proteins and toxic compounds (for example glucosinolates). The first goal of this thesis was to study changes in gene expression after insect attack using microarrays. The responses of Arabidopsis thaliana to feeding by the specialist Pieris rapae and the generalist Spodoptera liffora is were compared. We found that the transcript profiles after feeding by the two chewing insects were remarkably similar, although the generalist induced a slightly stronger response. The second goal was to evaluate the implication of the four signals jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) in the control of insect-regulated gene expression. Using signaling mutants, we observed that JA was the predominant signal and that ABA modulated defense gene expression. In contrast, SA and ET appeared to control slightly gene expression, but only after feeding by S. litforalis. The third goal was to establish whether plant responses are really effective against insects. In accordance with the transcript profile, both insects were affected by the JA-dependent defenses, as they performed better on the JA-insensitive mutant. S. littoralis also performed better on ABA-deficient mutants, providing evidence for the role of ABA in defense against insects. When testing indole or aliphatic glucosinolate deficient mutants, we found that they were also more susceptible to insect feeding, providing some of the first genetic evidence for the defensive role of glucosinolates in planta. Finally, a glutathione-deficient mutant, pad2-1, was also more susceptible to insect feeding and we could attribute this phenotype to a lowered accumulation of the major indole glucosinolate. In this thesis, we provide a comprehensive list of insect-regulated genes, including many transcription factors that constitute interesting candidate genes for the further study of insect-induced expression changes. Understanding how the plant responses to insects are regulated will provide tools for a better management of insect pest in the field. Résumé: Les plantes ne peuvent s'échapper pour fuir les insectes qui les attaquent, mais elles se défendent en produisant des protéines anti-digestives et des composés toxiques (par exemple des glucosinolates). Le premier but de cette thèse était d'étudier les changements de l'expression génétique lors d'attaque par des insectes en utilisant des puces à ADN. Nous avons comparé la réponse d'Arabidopsis thaliana à deux espèces d'insectes avec des habitudes alimentaires différentes : le spécialiste Pieris rapae et le généraliste Spodoptera littoralis. Nous avons trouvé que les profils de transcription après l'attaque par les deux insectes sont remarquablement similaires, bien que le généraliste induise une réponse légèrement plus forte. Le deuxième but était de déterminer l'implication de quatre signaux dans le contrôle de la réponse :l'acide jasmonique (JA), l'acide salicylique (SA), l'éthylène (ET), et l'acide abscissique (ABA). En utilisant de mutants de signalisation, nous avons montré que l'acide jasmonique était le signal prédominant et que l'acide abscissique modulait l'expression génétique. D'autre part, l'acide salicylique et l'éthylène contrôlent à un degré moindre l'expression génétique, mais seulement après l'attaque par S. littoralís. Le troisième but était d'établir si les réponses des plantes sont efficaces contre les insectes. En accord avec le profil de transcription, les deux espèces d'insectes se sont mieux développées sur un mutant insensible au JA, indiquant que les défenses contrôlées par ce signal sont cruciales pour la plante. De plus, les larves de S. littorales se sont mieux développées sur des mutants déficients en ABA, ce qui fournit une preuve du rôle de l'acide abscissique dans la défense contre les insectes. En testant des mutants déficients en glucosinolates de type indole ou aliphatique, nous avons trouvé qu'ils étaient plus sensibles aux insectes, démontrant ainsi le rôle défensif des glucosinolates in planta. Finalement, le mutant déficient en glutathion pad2-1 était aussi plus sensible à l'attaque des insectes, et nous avons pu attribuer ce phénotype à une plus faible augmentation d'un indole glucosinolate dans ce mutant. Dans cette thèse, nous avons mis en évidence un nombre important de gènes contrôlés par les insectes, comprenant de nombreux facteurs de transcription qui constituent des candidats intéressants pour`étudier plus en détail les changements d'expression génétique induits par les insectes. Une meilleure compréhension de la réponse des plantes contre l'attaque des insectes devrait nous permettre de développer de nouvelles stratégies pour mieux gérer les ravageurs des cultures.
Resumo:
The objective of this study was to establish whether there are olfactory interactions in the Lysiphlebus testaceipes Toxoptera citricida and Citrus aurantium tritrophic system. The response of male and female L. testaceipes to different odour sources of the host plant C. aurantium, the aphid host T. citricida and aphid-plant complex were investigated using a Y-tube olfactometer. Laboratory experiments were conducted by exposing individually aged male and female L. testaceipes to eight different odour treatments. Response of the parasitoids was taken after 15 min exposure to the volatiles from the different odour sources and based on their orientation to the particular chamber. Seventy percent of both male and female L. testaceipes showed high attractivity to aphid infested leaves. There was no significant difference based on age and sex of the parasitoid on their choice of odour. The organic compounds released by these combinations acted as semiochemicals in the tritrophic interactions and it is suggested that insect feeding induced attraction of the parasitoid L. testaceipes.
Resumo:
Insect attack triggers changes in transcript level in plants that are mediated predominantly by jasmonic acid (JA). The implication of ethylene (ET), salicylic acid (SA), and other signals in this response is less understood and was monitored with a microarray containing insect- and defense-regulated genes. Arabidopsis thaliana mutants coi1-1, ein2-1, and sid2-1 impaired in JA, ET, and SA signaling pathways were challenged with the specialist small cabbage white (Pieris rapae) and the generalist Egyptian cotton worm (Spodoptera littoralis). JA was shown to be a major signal controlling the upregulation of defense genes in response to either insect but was found to suppress changes in transcript level only in response to P. rapae. Larval growth was affected by the JA-dependent defenses, but S. littoralis gained much more weight on coi1-1 than P. rapae. ET and SA mutants had an altered transcript profile after S. littoralis herbivory but not after P. rapae herbivory. In contrast, both insects yielded similar transcript signatures in the abscisic acid (ABA)-biosynthetic mutants aba2-1 and aba3-1, and ABA controlled transcript levels both negatively and positively in insect-attacked plants. In accordance with the transcript signature, S. littoralis larvae performed better on aba2-1 mutants. This study reveals a new role for ABA in defense against insects in Arabidopsis and identifies some components important for plant resistance to herbivory.
Resumo:
Eggs deposited on plants by herbivorous insects represent a threat as they develop into feeding larvae. Plants are not a passive substrate and have evolved sophisticated mechanisms to detect eggs and induce direct and indirect defenses. Recent years have seen exciting development in molecular aspects of egg-induced responses. Some egg-associated elicitors have been identified, and signaling pathways and egg-induced expression profiles are being uncovered. Depending on the mode of oviposition, both the jasmonic acid and salicylic acid pathways seem to play a role in the induction of defense responses. An emerging concept is that eggs are recognized like microbial pathogens and innate immune responses are triggered. In addition, some eggs contain elicitors that induce highly specific defenses in plants. Examples of egg-induced suppression of defense or, on the contrary, egg-induced resistance highlight the complexity of plant-egg interactions in an on-going arms race between herbivores and their hosts. A major challenge is to identify plant receptors for egg-associated elicitors, to assess the specificity of these elicitors and to identify molecular components that underlie various responses to oviposition.
Resumo:
Pseudomonas fluorescens CHA0 and the related strain Pf-5 are well-characterized representatives of rhizosphere bacteria that have the capacity to protect crop plants from fungal root diseases, mainly by releasing a variety of exoproducts that are toxic to plant pathogenic fungi. Here, we report that the two plant-beneficial pseudomonads also exhibit potent insecticidal activity. Anti-insect activity is linked to a novel genomic locus encoding a large protein toxin termed Fit (for P. fluorescensinsecticidal toxin) that is related to the insect toxin Mcf (Makes caterpillars floppy) of the entomopathogen Photorhabdus luminescens, a mutualist of insect-invading nematodes. When injected into the haemocoel, even low doses of P. fluorescens CHA0 or Pf-5 killed larvae of the tobacco hornworm Manduca sexta and the greater wax moth Galleria mellonella. In contrast, mutants of CHA0 or Pf-5 with deletions in the Fit toxin gene were significantly less virulent to the larvae. When expressed from an inducible promoter in a non-toxic Escherichia coli host, the Fit toxin gene was sufficient to render the bacterium toxic to both insect hosts. Our findings establish the Fit gene products of P. fluorescens CHA0 and Pf-5 as potent insect toxins that define previously unappreciated anti-insect properties of these plant-colonizing bacteria
Resumo:
BACKGROUND: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. RESULTS: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. CONCLUSIONS: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
Resumo:
Since Ehrlich & Raven's seminal paper 50 years ago, coevolution has been seen as a major driver of species diversification. Here, we review classical and more recent case studies on the coevolution of plants and associated insects, to examine whether the coevolutionary component holds as an explanation of their current diversity. We discuss the main dogmas in coevolution and argue that coevolutionary processes should not be considered as major drivers of diversification in plants and insects. Instead, we suggest that coevolution essentially occurs through relatively short 'interludes', making the pattern difficult to detect. We also criticize the use of comparative phylogenetics to investigate coevolutionary processes, as coevolution may not necessarily produce congruent phylogenies among interacting lineages and, in turn, other processes may produce patterns of codivergence. Finally, we propose new lines of investigation for future research.
Resumo:
Plants constitute an excellent ecosystem for microorganisms. The environmental conditions offered differ considerably between the highly variable aerial plant part and the more stable root system. Microbes interact with plant tissues and cells with different degrees of dependence. The most interesting from the microbial ecology point of view, however, are specific interactions developed by plant-beneficial (either non-symbiotic or symbiotic) and pathogenic microorganisms. Plants, like humans and other animals, also become sick, but they have evolved a sophisticated defense response against microbes, based on a combination of constitutive and inducible responses which can be localized or spread throughout plant organs and tissues. The response is mediated by several messenger molecules that activate pathogen-responsive genes coding for enzymes or antimicrobial compounds, and produces less sophisticated and specific compounds than immunoglobulins in animals. However, the response specifically detects intracellularly a type of protein of the pathogen based on a gene-for-gene interaction recognition system, triggering a biochemical attack and programmed cell death. Several implications for the management of plant diseases are derived from knowledge of the basis of the specificity of plant-bacteria interactions. New biotechnological products are currently being developed based on stimulation of the plant defense response, and on the use of plant-beneficial bacteria for biological control of plant diseases (biopesticides) and for plant growth promotion (biofertilizers)
Resumo:
Plant-virus interactions are very complex in nature and lead to disease and symptom formation by causing various physiological, metabolic and developmental changes in the host plants. These interactions are mainly the outcomes of viral hijacking of host components to complete their infection cycles and of host defensive responses to restrict the viral infections. Viral genomes contain only a small number of genes often encoding for multifunctional proteins, and all are essential in establishing a viral infection. Thus, it is important to understand the specific roles of individual viral genes and their contribution to the viral life cycles. Among the most important viral proteins are the suppressors of RNA silencing (VSRs). These proteins function to suppress host defenses mediated by RNA silencing and can also serve in other functions, e.g. in viral movement, transactivation of host genes, virus replication and protein processing. Thus these proteins are likely to have a significant impact on host physiology and metabolism. In the present study, I have examined the plant-virus interactions and the effects of three different VSRs on host physiology and gene expression levels by microarray analysis of transgenic plants that express these VSR genes. I also studied the gene expression changes related to the expression of the whole genome of Tobacco mosaic virus (TMV) in transgenic tobacco plants. Expression of the VSR genes in the transgenic tobacco plants causes significant changes in the gene expression profiles. HC-Pro gene derived from the Potyvirus Y (PVY) causes alteration of 748 and 332 transcripts, AC2 gene derived from the African cassava mosaic virus (ACMV) causes alteration of 1118 and 251transcripts, and P25 gene derived from the Potyvirus X (PVX) causes alterations of 1355 and 64 transcripts in leaves and flowers, respectively. All three VSRs cause similar up-regulation in defense, hormonally regulated and different stress-related genes and down-regulation in the photosynthesis and starch metabolism related genes. They also induce alterations that are specific to each viral VSR. The phenotype and transcriptome alterations of the HC-Pro expressing transgenic plants are similar to those observed in some Potyvirus-infected plants. The plants show increased protein degradation, which may be due to the HC-Pro cysteine endopeptidase and thioredoxin activities. The AC2-expressing transgenic plants show a similar phenotype and gene expression pattern as HC-Pro-expressing plants, but also alter pathways related to jasmonic acid, ethylene and retrograde signaling. In the P25 expressing transgenic plants, high numbers of genes (total of 1355) were up-regulated in the leaves, compared to a very low number of down-regulated genes (total of 5). Despite of strong induction of the transcripts, only mild growth reduction and no other distinct phenotype was observed in these plants. As an example of whole virus interactions with its host, I also studied gene expression changes caused by Tobacco mosaic virus (TMV) in tobacco host in three different conditions, i.e. in transgenic plants that are first resistant to the virus, and then become susceptible to it and in wild type plants naturally infected with this virus. The microarray analysis revealed up and down-regulation of 1362 and 1422 transcripts in the TMV resistant young transgenic plants, and up and down-regulation of a total of 1150 and 1200 transcripts, respectively, in the older plants, after the resistance break. Natural TMV infections in wild type plants caused up-regulation of 550 transcripts and down-regulation of 480 transcripts. 124 up-regulated and 29 down-regulated transcripts were commonly altered between young and old TMV transgenic plants, and only 6 up-regulated and none of the down-regulated transcripts were commonly altered in all three plants. During the resistant stage, the strong down-regulation in translation-related transcripts (total of 750 genes) was observed. Additionally, transcripts related to the hormones, protein degradation and defense pathways, cell division and stress were distinctly altered. All these alterations may contribute to the TMV resistance in the young transgenic plants, and the resistance may also be related to RNA silencing, despite of the low viral abundance and lack of viral siRNAs or TMV methylation activity in the plants.
Resumo:
This thesis focuses on flavonoids, a subgroup of phenolic compounds produced by plants, and how they affect the herbivorous larvae of lepidopterans and sawflies. The first part of the literature review examines different techniques to analyze the chemical structures of flavonoids and their concentrations in biological samples. These techniques include, for example, ultraviolet-visible spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The second part of the literature review studies how phenolic compounds function in the metabolism of larvae. The harmful oxidation reactions of phenolic compounds in insect guts are also emphasized. In addition to the negative effects, many insect species have evolved the use of phenolic compounds for their own benefit. In the experimental part of the thesis, high concentrations of complex flavonoid oligoglycosides were found in the hemolymph (the circulatory fluid of insects) of birch and pine sawflies. The larvae produced these compounds from simple flavonoid precursors present in the birch leaves and pine needles. Flavonoid glycosides were also found in the cocoon walls of sawflies, which suggested that flavonoids were used in the construction of cocoons. The second part of the experimental work studied the modifications of phenolic compounds in conditions that mimicked the alkaline guts of lepidopteran larvae. It was found that the 24 plant species studied and their individual phenolic compounds had variable capacities to function as oxidative defenses in alkaline conditions. The excrements of lepidopteran and sawfly species were studied to see how different types of phenolics were processed by the larvae. These results suggested that phenolic compounds were oxidized, hydrolyzed, or modified in other ways during their passage through the digestive tract of the larvae.