942 resultados para inhibitory effects
Resumo:
The study deals with the diversity in structural and spectural characteristics of some transition metal complexes derived from aldehyde based thiosemicarbazone ligands thiosemicarbazones are a family of compounds with beneficial biological activity viz., anticancer,antitumour, antifungal, antibacterial, antimalarial, antifilarial, antiviral and anti-HIV activities. Many thiosemicarbazone ligands and their complexes have been prepared and screened for their antimicrobial activity against various types of fungi and bacteria. The results prove that the compounds exhibit antimicrobial properties and it is important to note that in some cases metal chelates show more inhibitory effects than the parent ligands. The increased lipophilicity of these complexes seems to be responsible for their enhanced biological potency. Adverse biological activities of thiosemicarbazones have been widely studied in rats and in other species. The parameters measured show that copper complexes caused considerable oxidative stress and zinc zinc complexes behaved as antioxidants. It has applications on analytical field also. Some thiosemicarbazones produce highly colored complexes with metal ions. This thesis aims to synthesis some novel thiosemicarbazone ligands and their transition metal complexes together with their physico-chemical characterization.
Resumo:
El dolor oncológico representa una de las principales causas de dolor crónico, siendo los opioides la primera línea de manejo, sin embargo 10% de los pacientes requieren estrategias analgésicas multimodales. La eficacia analgésica de la clonidina como coadyuvante ha sido demostrada para diversos modelos de dolor. Sin embargo no hay revisiones sistemáticas que validen su eficacia y seguridad en dolor crónico oncológico. Se realizó una revisión sistemática de la literatura a noviembre 26 de 2012, encontrando 15 trabajos (12 reportes de caso y tres ensayos clínicos controlados), n=138 pacientes. La intervención tuvo una eficacia entre 44,7 y 100%, mostrando mayor beneficio en pacientes con componente de dolor neuropático. La adición de clonidina fue bien tolerada, siendo la sedación y la disminución en tensión arterial y frecuencia cardiaca los efectos secundarios más frecuentes, con relación dosis dependiente, de resolución espontánea y en ninguno de los casos se documentó lesión secundaria en los pacientes. La vía de administración más frecuente fue neuroaxial (intratecal y peridural). La revisión sistemática no fue susceptible de metaanálisis por la heterogeneidad clínica de los estudios. Los resultados obtenidos sugieren que la adición de clonidina puede ser una opción terapeútica eficaz y segura en los pacientes con dolor crónico oncológico severo refractario a opioides a altas dosis asociado o no a infusión neuroaxial de anestésico local, en especial en presencia de componente neuropático. Sin embargo se identificó la necesidad de un mayor número de ensayos clínicos controlados aleatorios que permitan establecer conclusiones definitivas.
Resumo:
Epidemiological data suggest that those who consume a diet rich in quercetin-containing foods may have a reduced risk of CVD. Furthermore, in vitro and ex vivo studies have observed the inhibition of collagen-induced platelet activation by quercetin. The aim of the present study was to investigate the possible inhibitory effects of quercetin ingestion from a dietary source on collagen-stimulated platelet aggregation and signalling. A double-blind randomised cross-over pilot study was undertaken. Subjects ingested a soup containing either a high or a low amount of quercetin. Plasma quercetin concentrations and platelet aggregation and signalling were assessed after soup ingestion. The high-quercetin soup contained 69 mg total quercetin compared with the low-quercetin soup containing 5 mg total quercetin. Plasma quercetin concentrations were significantly higher after high-quercetin soup ingestion than after low-quercetin soup ingestion and peaked at 2.59 (SEM 0.42) mu mol/l. Collagen-stimulated (0.5 mu g/ml) platelet aggregation was inhibited after ingestion of the high-quercetin soup in a time-dependent manner. Collagen-stimulated tyrosine phosphorylation of a key component of the collagen-signalling pathway via glycoprotein VI, Syk, was significantly inhibited by ingestion of the high-quercetin soup. The inhibition of Syk tyrosine phosphorylation was correlated with the area under the curve for the high-quercetin plasma profile. In conclusion, the ingestion of quercetin from a dietary source of onion soup could inhibit some aspects of collagen-stimulated platelet aggregation and signalling ex vivo. This further substantiates the epidemiological data suggesting that those who preferentially consume high amounts of quercetin-containing foods have a reduced risk of thrombosis and potential CVD risk.
Resumo:
There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.
Resumo:
LDL aggregates when exposed to even moderate fluid mechanical stresses in the laboratory, yet its half-life in the circulation is 2-3 days, implying that little aggregation occurs. LDL may be protected from aggregation in vivo by components of plasma, or by a qualitative difference in flows. Previous studies have shown that HDL and albumin inhibit the aggregation induced by vortexing. Using a more reproducible method of inducing aggregation and assessing aggregation both spectrophotometrically and by sedimentation techniques, we showed that at physiological concentrations, albumin is the more effective inhibitor, and that aggregation is substantially but not completely inhibited in plasma. Heat denatured and fatty-acid-stripped albumin were more effective inhibitors than normal albumin, supporting the idea that hydrophobic interactions are involved. Aggregation of LDL in a model reproducing several aspects of flow in the circulation was 200-fold slower, but was still inhibited by HDL and albumin, suggesting similar mechanisms are involved. Within the sensitivity of our technique, LDL aggregation did not occur in plasma exposed to these flows.jlr Thus, as a result of the characteristics of blood flow and the inhibitory effects of plasma components, particularly albumin, LDL aggregation is unlikely to occur within the circulation.
Resumo:
A novel protocol for rapid and efficient purification of antimicrobial peptides from plant seedlings has been developed. Two peptides with antimicrobial activity, designated p1 and p2, were purified nearly to homogeneity from Scots pine seedlings by a combination of sulfuric acid extraction, ammonium sulfate precipitation, heat-inactivation and ion-exchange chromatography on phosphocellulose. Purified proteins had molecular masses of 11 kDa (p1) and 5.8 kDa (p2) and were identified by mass spectrometry as defensin and lipid-transfer protein, respectively. We demonstrated their growth inhibitory effects against a group of phytopathogenic fungi. Furthermore, we report for the first time molecular cloning and characterization of defensin I cDNA from Scots pine. A cDNA expression library from 7 days Scots pine seedlings was generated and used to isolate a cDNA clone corresponding to Scots pine defensin, termed PsDef1. The full-length coding sequence of PsDef1 is 252 bp in length and has an open reading frame capable to encode a protein of 83 amino residues. The deduced sequence has the typical features of plant defensins, including an endoplasmic reticulum signal sequence of 33 aa, followed by a characteristic defensin domain of 50 amino acids representing its active form. The calculated molecular weight of the mature form of PsDef1 is 5601.6 Da, which correlates well with the results of SDS-PAGE analysis. Finally, the antimicrobial properties of PsDef1 against a panel of fungi and bacteria define it as a member of the morphogenic group of plant defensins. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The death of nigral neurons in Parkinson's disease is thought to involve the formation of the endogenous neurotoxin, 5-S-cysteinyl-dopamine. In the present study, we show that the polyphenols, (+)-catechin and caffeic acid, which contain a catechol moiety, inhibit tyrosinase-induced formation of 5-S-eysteinyl-dopamine via their capacity to undergo tyro sina se-induced oxidation to yield cysteinyl-polyphenol adducts. In contrast, the inhibition afforded by the flavanone, hesperetin, was not accompanied by the formation of cysteinyl-hesperetin adducts, indicating that it may inhibit via direct interaction with tyrosinase. Whilst the stilbene resveratrol also inhibited 5-S-eysteinyl-dopamine formation, this was accompanied by the formation of dihydrobenzothiazine, a strong neurotoxin. Our data indicate that the inhibitory effects of polyphenols against 5-S-cysteinyl-dopamine formation are structure-dependent and shed further light on the mechanisms by which polyphenols exert protection against neuronal injury relevant to neurodegenerative diseases. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Studies have suggested that diets rich in polyphenols Such as flavonoids may lead to a reduced risk of gastrointestinal cancers. We demonstrate the ability of monomeric and dimeric flavanols to scavenge reactive nitrogen species derived from nitrous acid. Both epicatechin and dimer B2 (epicatechin dimer) inhibited nitrous acid-induced formation of 3-nitrotyrosine and the formation of the carcinogenic N-nitrosamine, N-nitrosodimethylamine. The reaction of monomeric and dimeric epicatechin with nitrous acid led to the formation of mono- and di-nitroso flavanols, whereas the reaction with hesperetin resulted primarily in the formation of nitrated products. Although, epicatechin was transferred across the jejunum of the small intestine yielding metabolites, its nitroso form was not absorbed. Dimer B2 but not epicatechin monomer inhibited the proliferation of, and triggered apoptosis in, Caco-2 cells. The latter was accompanied by caspase-3 activation and reductions in Akt phosphorylation, suggesting activation of apoptosis via inhibition of prosurvival signaling. Furthermore, the dinitroso derivative of dimer B2, and to a lesser extent the dinitroso-epicatechin, also induced significant toxic effects in Caco-2 cells. The inhibitory effects on cellular proliferation were paralleled by early inhibition of ERK 1/2 phosphorylation and later reductions in cyclin D I levels, indicating modulation of cell cycle regulation in Caco-2 cells. These effects highlight multiple routes in which dietary derived flavanols may exert beneficial effects in the gastrointestinal tract. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
There has been much recent interest in the cardiovascular benefits of dietary isoflavones. The aim of the present in vitro studies was to investigate potential anti-thrombogenic and anti-atherogenic effects of the isoflavones genistein and daidzein in platelets, macrophages and endothelial cells. Pre-treatment with either isoflavone inhibited collagen-induced platelet aggregation in a dose-dependent manner. In a macrophage cell line (RAW 264-7) activated with interferon gamma plus lipopolysaccharide, both isoflavones were found to inhibit NO production and tumour necrosis factor alpha (TNF-alpha) secretion dose-dependently, but they did not affect mRNA levels for inducible nitric oxide synthase and cyclo-oxygenase-2. Both isoflavones also dose-dependently decreased monocyte chemoattractant protein-1 secretion induced by TNF-alpha in human umbilical vein endothelial cells. Compared with daidzein, genistein exerted greater inhibitory effects for all parameters studied. The present data contributes to our knowledge on the molecular mechanisms by which isoflavones may protect against coronary artery disease. Further studies are required to determine whether the effects of isoflavones observed in the current in vitro studies are relevant to the aetiology of coronary artery disease in vivo.
Resumo:
Acute gut disorder is a cause for significant medicinal and economic concern. Certain individual pathogens of the gut, often transmitted in food or water, have the ability to cause severe discomfort. There is a need to manage such conditions more effectively. The route of reducing the risk of intestinal infections through diet remains largely unexplored. Antibiotics are effective at inhibiting pathogens; however, these should not be prescribed in the absence of disease and therefore cannot be used prophylactically. Moreover, their indiscriminate use has reduced effectiveness. Evidence has accumulated to suggest that some of the health-promoting bacteria in the gut (probiotics) can elicit a multiplicity of inhibitory effects against pathogens. Hence, an increase in their numbers should prove effective at repressing pathogen colonisation if/when infectious agents enter the gut. As such, fortification of indigenous bifidobacteria/lactobacilli by using prebiotics should improve protection. There are a number of potential mechanisms for lactic acid bacteria to reduce intestinal infections. Firstly, metabolic endproducts such as acids excreted by these micro-organisms may lower the gut pH to levels below those at which pathogens are able to effectively compete. Also, many lactobacilli and bifidobacteria species are able to excrete natural antibiotics, which can have a broad spectrum of activity. Other mechanisms include an improved immune stimulation, competition for nutrients and blocking of pathogen adhesion sites in the gut. Many intestinal pathogens like type 1 fimbriated Escherichia coli, salmonellae and campylobacters utilise oligosaccharide receptor sites in the gut. Once established, they can then cause gastroenteritis through invasive and/or toxin forming properties. One extrapolation of the prebiotic concept is to simulate such receptor sites in the gut lumen. Hence, the pathogen is 'decoyed' into not binding at the host mucosal interface. The combined effects of prebiotics upon the lactic acid flora and anti-adhesive strategies may lead towards new dietary interventions against food safety agents.
Resumo:
Tea polyphenols, especially the catechins, are potent antimicrobial and antioxidant agents, with positive effects on human health. White tea is one of the less studied teas but the flavour is more accepted than that of green tea in Europe. The concentrations of various catechins in 13 different kinds of infusion were determined by capillary electrophoresis. The total polyphenol content (Folin-Ciocalteu method), the trolox equivalent antioxidant capacity (TEAC value determined with the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation) and the inhibitory effects of infusions on the growth of some microorganisms were determined. Five different infusions (black, white, green and red teas and rooibos infusion) were added to a model food system, comprising a sunflower oil-in-water emulsion containing 0% or 0.2% bovine serum albumin (BSA), and the oxidative stability was studied during storage at 37 degrees C. Oxidation of the oil was monitored by determination of the peroxide value. The highest radical-scavenging activity observed was for the green and white teas. Emulsions containing these extracts from these teas were much more stable during storage when BSA was present than when it was not present, even though BSA itself did not provide an antioxidant effect (at 0.2% concentration). Rooibos infusion did not show the same synergy with BSA. Green tea and white tea showed similar inhibitions of several microorganisms and the magnitude of this was comparable to that of the commercial infusion 2 (C.I.2), "te de la belleza". This tea also had an antioxidant activity comparable to green tea. (C) 2007 Published by Elsevier Ltd.
Resumo:
Background: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation. Objective: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors. Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors. Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either C81 /C82 antagonists. Conclusion: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis. (c) 2006 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Abstract: Modulation of presynaptic voltage-dependent Ca+ channels is a major means of controlling neurotransmitter release. The CaV 2.2 Ca2+ channel subunit contains several inhibitory interaction sites for Gβγ subunits, including the amino terminal (NT) and I–II loop. The NT and I–II loop have also been proposed to undergo a G protein-gated inhibitory interaction, whilst the NT itself has also been proposed to suppress CaV 2 channel activity. Here, we investigate the effects of an amino terminal (CaV 2.2[45–55]) ‘NT peptide’ and a I–II loop alpha interaction domain (CaV 2.2[377–393]) ‘AID peptide’ on synaptic transmission, Ca2+ channel activity and G protein modulation in superior cervical ganglion neurones (SCGNs). Presynaptic injection of NT or AID peptide into SCGN synapses inhibited synaptic transmission and also attenuated noradrenaline-induced G protein modulation. In isolated SCGNs, NT and AID peptides reduced whole-cell Ca2+ current amplitude, modified voltage dependence of Ca2+ channel activation and attenuated noradrenaline-induced G protein modulation. Co-application of NT and AID peptide negated inhibitory actions. Together, these data favour direct peptide interaction with presynaptic Ca2+ channels, with effects on current amplitude and gating representing likely mechanisms responsible for inhibition of synaptic transmission. Mutations to residues reported as determinants of Ca2+ channel function within the NT peptide negated inhibitory effects on synaptic transmission, Ca2+ current amplitude and gating and G protein modulation. A mutation within the proposed QXXER motif for G protein modulation did not abolish inhibitory effects of the AID peptide. This study suggests that the CaV 2.2 amino terminal and I–II loop contribute molecular determinants for Ca2+ channel function; the data favour a direct interaction of peptides with Ca2+ channels to inhibit synaptic transmission and attenuate G protein modulation. Non-technical summary: Nerve cells (neurones) in the body communicate with each other by releasing chemicals (neurotransmitters) which act on proteins called receptors. An important group of receptors (called G protein coupled receptors, GPCRs) regulate the release of neurotransmitters by an action on the ion channels that let calcium into the cell. Here, we show for the first time that small peptides based on specific regions of calcium ion channels involved in GPCR signalling can themselves inhibit nerve cell communication. We show that these peptides act directly on calcium channels to make them more difficult to open and thus reduce calcium influx into native neurones. These peptides also reduce GPCR-mediated signalling. This work is important in increasing our knowledge about modulation of the calcium ion channel protein; such knowledge may help in the development of drugs to prevent signalling in pathways such as those involved in pain perception.
Resumo:
Levetiracetam (LEV) is a prominent antiepileptic drug (AED) which binds to neuronal synaptic vesicle glycoprotein 2A (SV2A) protein and has reported effects on ion channels, but retains a poorly-defined mechanism of action. Here, we investigate inhibition of voltage-dependent Ca2+ (CaV) channels as a potential mechanism by which LEV imparts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and CaV channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated effects of the LEV ‘inactive’ R-enantiomer, UCB L060. Thus, LEV, but not UCB L060 (each 100 μM), inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials (EPSP) following ≥30 min application. In isolated SCGNs, LEV pretreatment (≥1 h), but not acute (5 min) application, significantly inhibited whole-cell IBa amplitude. In current clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential (AHP) in a Ca2+-dependent manner, but also increased action potential (AP) latency in a Ca2+-independent manner, suggesting further mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused a rapid inhibition of IBa amplitude to an extent comparable to that seen following extracellular LEV pretreatment ( ≥ 1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on IBa amplitude. These results identify a stereospecific intracellular pathway by which LEV inhibits presynaptic CaV channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.
Resumo:
Snaclecs are small non-enzymatic proteins present in viper venoms reported to modulate haemostasis of victims through effects on platelets, vascular endothelial and smooth muscle cells. In this study, we have isolated and functionally characterised a snaclec which we named rhinocetin from the venom of West African gaboon viper, Bitis gabonica rhinoceros. Rhinocetin was shown to comprise α and β chains with the molecular masses of 13.5 and 13kDa respectively. Sequence and immunoblot analysis of rhinocetin confirmed this to be a novel snaclec. Rhinocetin inhibited collagen-stimulated activation of human platelets in dose dependent manner, but displayed no inhibitory effects on glycoprotein VI (collagen receptor) selective agonist, CRP-XL-, ADP- or thrombin-induced platelet activation. Rhinocetin antagonised the binding of monoclonal antibodies against the α2 subunit of integrin α2β1 to platelets and coimmunoprecipitation analysis confirmed integrin α2β1 as a target for this venom protein. Rhinocetin inhibited a range of collagen induced platelet functions such as fibrinogen binding, calcium mobilisation, granule secretion, aggregation and thrombus formation. It also inhibited integrin α2β1 dependent functions of human endothelial cells. Together, our data suggest rhinocetin to be a modulator of integrin α2β1 function and thus may provide valuable insights into the role of this integrin in physiological and pathophysiological scenarios including haemostasis, thrombosis and envenomation.