976 resultados para infrared qualitative analyses
Resumo:
Fourier transform IR spectra in the ν2 and ν3 regions between 800 and 1500 cm−1 have been measured of H16OF with a resolution of 0.007 cm−1 and of H18OF and DOF with a resolution of 0.040 cm−1. Ground state constants have been improved for H16OF and have been obtained for the first time for H18OF. Parameters of the v2 = 1 and v3 = 1 excited states have been determined from rovibrational analyses of ca. 1000 ν2/ν3 lines which were fitted with σ 0.36, 4.5, and 7.6 × 10−3 cm−1 for H16OF, H18OF, and D16OF, respectively. Band centers of ν2/ν3 are 1353.40466(5)/889.07974(6), 1350.3976(5)/862.2967(7), and 1002.0083(9)/891.0014(15) cm−1, respectively, for the three isotopic species. While ν2 and ν3 are sufficiently separated in HOF to be treated independently, a Coriolis resonance is evident in DOF, the interaction constant ξ23c = 0.19073(16) cm−1 being in agreement with the prediction from the harmonic force field.
Resumo:
The variety and quality of the tenant mix within a shopping centre is a key concern in shopping centre management. Tenant mix determines the extent of externalities between outlets in the centre, helps establish the image of the centre and, as a result, determines the attractiveness of the centre for consumers. This then translates into sales and rents. However, the management of tenant mix has largely been based on perceived “optimum” arrangements and industry rules of thumb. This paper attempts to model the impact of tenant mix on the rent paid by retailers in larger UK shopping centres and, hence, the returns made by shopping centre landlords. It extends work on shopping centre rent determination (see Working Paper 10/03) utilising a database of 148 regional shopping centres in the UK, with detailed data for over 1900 tenants. Econometric models test the relationship between rental levels and the levels of retail concentration and diversity, while controlling for a range of continuous and qualitative characteristics of each tenant, each retail product, and each shopping centre. Factor analysis is then used to extract the core retail and service categories from the tenant lists of the 148 shopping centres. The factor scores from these core retailer factors are then tested against rent payable. The results from the empirical analysis allow us to generate some clear analytical and empirical implications for optimal retail management.
Resumo:
The goal was to quantitatively estimate and compare the fidelity of images acquired with a digital imaging system (ADAR 5500) and generated through scanning of color infrared aerial photographs (SCIRAP) using image-based metrics. Images were collected nearly simultaneously in two repetitive flights to generate multi-temporal datasets. Spatial fidelity of ADAR was lower than that of SCIRAP images. Radiometric noise was higher for SCIRAP than for ADAR images, even though noise from misregistration effects was lower. These results suggest that with careful control of film scanning, the overall fidelity of SCIRAP imagery can be comparable to that of digital multispectral camera data. Therefore, SCIRAP images can likely be used in conjunction with digital metric camera imagery in long-term landcover change analyses.
Resumo:
A new aerosol index for the Along-Track Scanning Radiometers (ATSRs) is presented that provides a means to detect desert dust contamination in infrared SST retrievals. The ATSR Saharan dust index (ASDI) utilises only the thermal infrared channels and may therefore be applied consistently to the entire ATSR data record (1991 to present), for both day time and night time observations. The derivation of the ASDI is based on a principal component (PC) analysis (PCA) of two unique pairs of channel brightness temperature differences (BTDs). In 2-D space (i.e. BTD vs BTD), it is found that the loci of data unaffected by aerosol are confined to a single axis of variability. In contrast, the loci of aerosol-contaminated data fall off-axis, shifting in a direction that is approximately orthogonal to the clear-sky axis. The ASDI is therefore defined to be the second PC, where the first PC accounts for the clear-sky variability. The primary ASDI utilises the ATSR nadir and forward-view observations at 11 and 12 μm (ASDI2). A secondary, three-channel nadir-only ASDI (ASDI3) is also defined for situations where data from the forward view are not available. Empirical and theoretical analyses suggest that ASDI is well correlated with aerosol optical depth (AOD: correlation r is typically > 0.7) and provides an effective tool for detecting desert mineral dust. Overall, ASDI2 is found to be more effective than ASDI3, with the latter being sensitive only to very high dust loading. In addition, use of ASDI3 is confined to night time observations as it relies on data from the 3.7 μm channel, which is sensitive to reflected solar radiation. This highlights the benefits of having data from both a nadir- and a forward-view for this particular approach to aerosol detection.
Resumo:
Considerable effort is presently being devoted to producing high-resolution sea surface temperature (SST) analyses with a goal of spatial grid resolutions as low as 1 km. Because grid resolution is not the same as feature resolution, a method is needed to objectively determine the resolution capability and accuracy of SST analysis products. Ocean model SST fields are used in this study as simulated “true” SST data and subsampled based on actual infrared and microwave satellite data coverage. The subsampled data are used to simulate sampling errors due to missing data. Two different SST analyses are considered and run using both the full and the subsampled model SST fields, with and without additional noise. The results are compared as a function of spatial scales of variability using wavenumber auto- and cross-spectral analysis. The spectral variance at high wavenumbers (smallest wavelengths) is shown to be attenuated relative to the true SST because of smoothing that is inherent to both analysis procedures. Comparisons of the two analyses (both having grid sizes of roughly ) show important differences. One analysis tends to reproduce small-scale features more accurately when the high-resolution data coverage is good but produces more spurious small-scale noise when the high-resolution data coverage is poor. Analysis procedures can thus generate small-scale features with and without data, but the small-scale features in an SST analysis may be just noise when high-resolution data are sparse. Users must therefore be skeptical of high-resolution SST products, especially in regions where high-resolution (~5 km) infrared satellite data are limited because of cloud cover.
Resumo:
This paper presents the development of a rapid method with ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) for the qualitative and quantitative analyses of plant proanthocyanidins directly from crude plant extracts. The method utilizes a range of cone voltages to achieve the depolymerization step in the ion source of both smaller oligomers and larger polymers. The formed depolymerization products are further fragmented in the collision cell to enable their selective detection. This UPLC-MS/MS method is able to separately quantitate the terminal and extension units of the most common proanthocyanidin subclasses, that is, procyanidins and prodelphinidins. The resulting data enable (1) quantitation of the total proanthocyanidin content, (2) quantitation of total procyanidins and prodelphinidins including the procyanidin/prodelphinidin ratio, (3) estimation of the mean degree of polymerization for the oligomers and polymers, and (4) estimation of how the different procyanidin and prodelphinidin types are distributed along the chromatographic hump typically produced by large proanthocyanidins. All of this is achieved within the 10 min period of analysis, which makes the presented method a significant addition to the chemistry tools currently available for the qualitative and quantitative analyses of complex proanthocyanidin mixtures from plant extracts.
Resumo:
Using a combination of idealized radiative transfer simulations and a case study from the first field campaign of the Saharan Mineral Dust Experiment (SAMUM) in southern Morocco, this paper provides a systematic assessment of the limitations of the widely used Spinning Enhanced Visible and Infrared Imager (SEVIRI) red-green-blue (RGB) thermal infrared dust product. Both analyses indicate that the ability of the product to identify dust, via its characteristic pink coloring, is strongly dependent on the column water vapor, the lower tropospheric lapse rate, and dust altitude. In particular, when column water vapor exceeds ∼20–25 mm, dust presence, even for visible optical depths of the order 0.8, is effectively masked. Variability in dust optical properties also has a marked impact on the imagery, primarily as a result of variability in dust composition. There is a moderate sensitivity to the satellite viewing geometry, particularly in moist conditions. The underlying surface can act to confound the signal seen through variations in spectral emissivity, which are predominantly manifested in the 8.7μm SEVIRI channel. In addition, if a temperature inversion is present, typical of early morning conditions over the Sahara and Sahel, an increased dust loading can actually reduce the pink coloring of the RGB image compared to pristine conditions. Attempts to match specific SEVIRI observations to simulations using SAMUM measurements are challenging because of high uncertainties in surface skin temperature and emissivity. Recommendations concerning the use and interpretation of the SEVIRI RGB imagery are provided on the basis of these findings.
Resumo:
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
Resumo:
Background: Obstetric ultrasound has come to play a significant role in obstetrics since its introduction in clinical care. Today, most pregnant women in the developed world are exposed to obstetric ultrasound examinations, and there is no doubt that the advantages of obstetric ultrasound technique have led to improvements in pregnancy outcomes. However, at the same time, the increasing use has also raised many ethical challenges. This study aimed to explore obstetricians' experiences of the significance of obstetric ultrasound for clinical management of complicated pregnancy and their perceptions of expectant parents' experiences. Methods: A qualitative study was undertaken in November 2012 as part of the CROss-Country Ultrasound Study (CROCUS). Semi-structured individual interviews were held with 14 obstetricians working at two large hospitals in Victoria, Australia. Transcribed data underwent qualitative content analysis. Results: An overall theme emerged during the analyses, 'Obstetric ultrasound - a third eye', reflecting the significance and meaning of ultrasound in pregnancy, and the importance of the additional information that ultrasound offers clinicians managing the surveillance of a pregnant woman and her fetus. This theme was built on four categories: I:'Everyday-tool' for pregnancy surveillance, II: Significance for managing complicated pregnancy, III: Differing perspectives on obstetric ultrasound, and IV: Counselling as a balancing act. In summary, the obstetricians viewed obstetric ultrasound as an invaluable tool in their everyday practice. More importantly however, the findings emphasise some of the clinical dilemmas that occur due to its use: the obstetricians' and expectant parents' differing perspectives and expectations of obstetric ultrasound examinations, the challenges of uncertain ultrasound findings, and how this information was conveyed and balanced by obstetricians in counselling expectant parents. Conclusions: This study highlights a range of previously rarely acknowledged clinical dilemmas that obstetricians face in relation to the use of obstetric ultrasound. Despite being a tool of considerable significance in the surveillance of pregnancy, there are limitations and uncertainties that arise with its use that make counselling expectant parents challenging. Research is needed which further investigates the effects and experiences of the continuing worldwide rapid technical advances in surveillance of pregnancies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Low intensity laser therapy has been recommended to support the cutaneous repair; however, so far studies do not have evaluated the tissue response following a single laser treatment. This study investigated the effect of a single laser irradiation on the healing of full-thickness skin lesions in rats.Methods: Forty-eight male rats were randomly divided into three groups. One surgical lesion was created on the back of rats using a punch of 8 mm in diameter. One group was not submitted to any treatment after surgery and it was used as control. Two energy doses from an 830-nm near-infrared diode laser were used immediately post-wounding: 1.3 J cm(-2) and 3 J cm(-2). The laser intensity 53 mW cm(-2) was kept for both groups. Biometrical and histological analyses were accomplished at days 3, 7 and 14 post-wounding.Results: Irradiated lesions presented a more advanced healing process than control group. The dose of 1.3 J cm(-2) leaded to better results. Lesions of the group irradiated with 1.3 J cm(-2) presented faster lesion contraction showing quicker re-epithelization and reformed connective tissue with more organized collagen fibers.Conclusions: Low-intensity laser therapy may accelerate cutaneous wound healing in a rat model even if a single laser treatment is performed. This finding might broaden current treatment regimens. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work analyses a hypothetically improved perturbative approach taking a dressed massive-like gluon propagator and an effective coupling into account. As an early step, corrections were calculated to the ghost and gluon propagators, and the ghost-gluon vertex in the Landau gauge, pure SU(3) Yang-Mills theory. Results were satisfactorily compared with lattice data. © 2013 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.