991 resultados para indoor-scene-classification
Resumo:
In this paper, we describe the main processes and operations in mining industries and present a comprehensive survey of operations research methodologies that have been applied over the last several decades. The literature review is classified into four main categories: mine design; mine production; mine transportation; and mine evaluation. Mining design models are further separated according to two main mining methods: open-pit and underground. Moreover, mine production models are subcategorised into two groups: ore mining and coal mining. Mine transportation models are further partitioned in accordance with fleet management, truck haulage and train scheduling. Mine evaluation models are further subdivided into four clusters in terms of mining method selection, quality control, financial risks and environmental protection. The main characteristics of four Australian commercial mining software are addressed and compared. This paper bridges the gaps in the literature and motivates researchers to develop more applicable, realistic and comprehensive operations research models and solution techniques that are directly linked with mining industries.
Resumo:
It is a big challenge to acquire correct user profiles for personalized text classification since users may be unsure in providing their interests. Traditional approaches to user profiling adopt machine learning (ML) to automatically discover classification knowledge from explicit user feedback in describing personal interests. However, the accuracy of ML-based methods cannot be significantly improved in many cases due to the term independence assumption and uncertainties associated with them. This paper presents a novel relevance feedback approach for personalized text classification. It basically applies data mining to discover knowledge from relevant and non-relevant text and constraints specific knowledge by reasoning rules to eliminate some conflicting information. We also developed a Dempster-Shafer (DS) approach as the means to utilise the specific knowledge to build high-quality data models for classification. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics support that the proposed technique achieves encouraging performance in comparing with the state-of-the-art relevance feedback models.
Resumo:
This paper discusses and summarises a recent systematic study on the implication of global warming on air conditioned office buildings in Australia. Four areas are covered, including analysis of historical weather data, generation of future weather data for the impact study of global warming, projection of building performance under various global warming scenarios, and evaluation of various adaptation strategies under 2070 high global warming conditions. Overall, it is found that depending on the assumed future climate scenarios and the location considered, the increase of total building energy use for the sample Australian office building may range from 0.4 to 15.1%. When the increase of annual average outdoor temperature exceeds 2 °C, the risk of overheating will increase significantly. However, the potential overheating problem could be completely eliminated if internal load density is significantly reduced.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure project quality and reliability. This paper proposes the use of the Log-Gabor filter bank, Discrete Wavelet Transform and Discrete Cosine Transform for feature extraction of solder joint images on Printed Circuit Boards (PCBs). A distance based on the Mahalanobis Cosine metric is also presented for classification of five different types of solder joints. From the experimental results, this methodology achieved high accuracy and a well generalised performance. This can be an effective method to reduce cost and improve quality in the production of PCBs in the manufacturing industry.
Resumo:
Large margin learning approaches, such as support vector machines (SVM), have been successfully applied to numerous classification tasks, especially for automatic facial expression recognition. The risk of such approaches however, is their sensitivity to large margin losses due to the influence from noisy training examples and outliers which is a common problem in the area of affective computing (i.e., manual coding at the frame level is tedious so coarse labels are normally assigned). In this paper, we leverage the relaxation of the parallel-hyperplanes constraint and propose the use of modified correlation filters (MCF). The MCF is similar in spirit to SVMs and correlation filters, but with the key difference of optimizing only a single hyperplane. We demonstrate the superiority of MCF over current techniques on a battery of experiments.
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team of international entrepreneurship researchers. In this vignette Dr Maria Kaya and Associate Professor Paul Steffens consider both the classification of musicians and their use of online social networks.
Resumo:
Design-build (DB) is a generic form of construction procurement, and, rather than simply representing a single system, it has evolved in practice into a variety of forms, each of which is similar to, and yet different from each other. Although the importance of selecting an appropriate DB variant has been widely accepted, difficulties occur in practice due to the multiplicity of terms and concepts used. What is needed is some kind of taxonomy or framework within which the individual variants can be placed and their relative attributes identified and understood. Through a comprehensive literature review and content analysis, this paper establishes a systematic classification framework for DB variants based on their operational attributes. In addition to providing much needed support for decision-making, this classification framework provides client/owners with perspectives to understand and examine different categories of DB variants from an operational perspective.
Resumo:
This paper considers the debate about the relationship between globalization and media policy from the perspective provided by a current review of the Australian media classification scheme. Drawing upon the author’s recent experience in being ‘inside’ the policy process, as Lead Commissioner on the Australian National Classification Scheme Review, it is argued that theories of globalization – including theories of neoliberal globalization – fail to adequately capture the complexities of the reform process, particularly around the relationship between regulation and markets. The paper considers the pressure points for media content policies arising from media globalization, and the wider questions surrounding media content policies in an age of media convergence.
Resumo:
The development of text classification techniques has been largely promoted in the past decade due to the increasing availability and widespread use of digital documents. Usually, the performance of text classification relies on the quality of categories and the accuracy of classifiers learned from samples. When training samples are unavailable or categories are unqualified, text classification performance would be degraded. In this paper, we propose an unsupervised multi-label text classification method to classify documents using a large set of categories stored in a world ontology. The approach has been promisingly evaluated by compared with typical text classification methods, using a real-world document collection and based on the ground truth encoded by human experts.
Resumo:
There is limited understanding about business strategies related to parliamentary government's departments. This study focuses on the strategies of departments of two state governments in Australia. The strategies are derived from department strategic plans available in public domain and collected from respective websites. The results of this research indicate that strategies fall into seven categories: internal, development, political, partnership, environment, reorientation and status quo. The strategies of the departments are mainly internal or development where development strategy is mainly the focus of departments such as transport, and infrastructure. Political strategy is prevalent for departments related to communities, and education and training. Further three layers of strategies are identified as kernel, cluster and individual, which are mapped to the developed taxonomy.