924 resultados para indirect inference
Resumo:
Understanding and anticipating biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi-model information-theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics and testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C-S-R plant strategies. We illustrate this approach with a set of 86 alien species in Northern Portugal. We first focus on predictors influencing species richness and expressing invasibility and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub-sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land-use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub-sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.
Resumo:
Background: Cytomegalovirus (CMV) disease remains an important cause of morbidity after kidney transplantation and has been associated with acute rejection, graft loss and other indirect effects. A 3-month course of VGC prophylaxis reduces the incidence of CMV disease. However, little is known about the indirect effects of lateonset CMV disease after VGC prophylaxis. Objective: To evaluate the impact and indirect consequences of late-onset CMV disease after VGC prophylaxis in kidney transplant recipients. Methods: Retrospective analysis of 61 consecutive adult kidney transplant recipient with positive CMV serology (donor or recipient) who received VGC prophylaxis for 3 months and completed a follow-up of at least 2 years post-transplantation. Patients who developed CMV disease within 1 year after transplantation were compared to CMV disease-free patients for renal function (plasma creatinine values) at 1, 6, 12 and 24 months and for the incidence of graft loss, acute rejection, diabetes, cancer and opportunistic infections. Results: 8/61 (13%) patients developed CMV disease at a median of 131 days after transplantation (range: 98-220). The CMV incidence in D+/R- high risk patients was 6/18 (33%), while it was 2/43 (5%) in intermediate-risk patients (p < 0.01). All 8 patients were treated by oral valganciclovir (median 39 days; range: 19-119) with a complete resolution of CMV disease. As shown in the figure, there was no difference in creatinine values between the two groups at any time during follow-up. There was no graft loss, and the incidence of acute rejection, cancer and opportunistic infections did not differ between the two groups. The incidence of post-transplant diabetes was higher (38% vs 15%) in patients with CMV disease, but this difference was not significant (p = 0.4). Conclusions: An incidence of 13% of late-onset CMV disease was observed despite 3 months VGC prophylaxis. However, no indirect consequences were found. Moreover, therapy of CMV disease by oral VGC was effective and safe. Larger trials are needed to study whether late-onset CMV disease is associated with indirect consequences, as described with early-onset CMV.
Resumo:
Assessing the total energy expenditure (TEE) and the levels of physical activity in free-living conditions with non-invasive techniques remains a challenge. The purpose of the present study was to investigate the accuracy of a new uniaxial accelerometer for assessing TEE and physical-activity-related energy expenditure (PAEE) over a 24 h period in a respiratory chamber, and to establish activity levels based on the accelerometry ranges corresponding to the operationally defined metabolic equivalent (MET) categories. In study 1, measurement of the 24 h energy expenditure of seventy-nine Japanese subjects (40 (SD 12) years old) was performed in a large respiratory chamber. During the measurements, the subjects wore a uniaxial accelerometer (Lifecorder; Suzuken Co. Ltd, Nagoya, Japan) on their belt. Two moderate walking exercises of 30 min each were performed on a horizontal treadmill. In study 2, ten male subjects walked at six different speeds and ran at three different speeds on a treadmill for 4 min, with the same accelerometer. O2 consumption was measured during the last minute of each stage and was expressed in MET. The measured TEE was 8447 (SD 1337) kJ/d. The accelerometer significantly underestimated TEE and PAEE (91.9 (SD 5.4) and 92.7 (SD 17.8) % chamber value respectively); however, there was a significant correlation between the two values (r 0.928 and 0.564 respectively; P<0.001). There was a strong correlation between the activity levels and the measured MET while walking (r(2) 0.93; P<0.001). Although TEE and PAEE were systematically underestimated during the 24 h period, the accelerometer assessed energy expenditure well during both the exercise period and the non-structured activities. Individual calibration factors may help to improve the accuracy of TEE estimation, but the average calibration factor for the group is probably sufficient for epidemiological research. This method is also important for assessing the diurnal profile of physical activity.
Resumo:
Dr. Gilbert Y. Baladi of Michigan State University has developed a new device intended for reliable determination of asphalt concrete mechanical properties such as Poisson's ratio, resilient modulus, and indirect tensile strength. The device is the result of an effort to improve upon procedures and equipment currently available for evaluation of mechanical properties. A duplicate of this device was fabricated in the Iowa Department of Transportation, Materials Lab Machine Shop in 1989. This report details the results of an evaluation of the effectiveness of the device in testing Marshall specimens for indirect tensile strength as compared to results obtained with standard equipment described in AASHTO T-283. Conclusions of the report are: l. Results obtained with the Baladi device average 6 to 8 percent higher than those obtained with the standard device. 2. The standard device exhibited a slightly greater degree of precision than did the Baladi device. 3. The Baladi device is easier and quicker to use than the standard apparatus. 4. It may be possible to estimate indirect tensile strength from the stability/flow ratio by dividing by factors of 1.8 and 1.5 for 50 blow and 75 blow mixes respectively.
Resumo:
We consider the problem of estimating the mean hospital cost of stays of a class of patients (e.g., a diagnosis-related group) as a function of patient characteristics. The statistical analysis is complicated by the asymmetry of the cost distribution, the possibility of censoring on the cost variable, and the occurrence of outliers. These problems have often been treated separately in the literature, and a method offering a joint solution to all of them is still missing. Indirect procedures have been proposed, combining an estimate of the duration distribution with an estimate of the conditional cost for a given duration. We propose a parametric version of this approach, allowing for asymmetry and censoring in the cost distribution and providing a mean cost estimator that is robust in the presence of extreme values. In addition, the new method takes covariate information into account.
Resumo:
A transportable, whole body indirect calorimeter, designed for use in the tropics, is described. The calorimeter was built to study energy expenditure of people having chronically or acutely low levels of food intake, and it will help to determine energy adaptations made by individuals with restricted food intake. The calorimeter comprises two units: a 27 m3 ventilated chamber connected to an office housing control and monitoring equipment. The system also allows the experimenter to assess the rate of energy expenditure by means of a ventilated hood or a baby respiration chamber. The incoming air flow rate is variable and is typically set at approximately 30 l/min. Carbon dioxide production (VCO2) and oxygen consumption (VO2) are continuously monitored by means of differential gas analysers via a computerized data acquisition unit. Gas production/consumption rates are measured with a delay of 80 s, the complete response to step changes in VCO2 or VO2 consumption being calculated over 15 min using the rate of change terms in the gas exchange equations. The total electrical power required for the whole system is 12 kW. The calorimeter has been functioning for nearly 4 years in a rural village of The Gambia during which ambient temperatures have ranged from 16 to 44 degrees C and dewpoints from -8 to 24 degrees C. The performance and accuracy of the calorimeter were tested using 20 per cent CO2 in N2 infusion and butane burning. Agreement between the theoretical and the measured values was found to be 99 per cent for VO2 and 100 per cent for VCO2 with a precision for both gases of +/- 10 ml/min over a 1-h period.
Resumo:
The objective of this work was to estimate the genetic parameters, genotypic and phenotypic correlations, and direct and indirect genetic gains among and within rubber tree (Hevea brasiliensis) progenies. The experiment was set up at the Municipality of Jaú, SP, Brazil. A randomized complete block design was used, with 22 treatments (progenies), 6 replicates, and 10 plants per plot at a spacing of 3x3 m. Three‑year‑old progenies were assessed for girth, rubber yield, and bark thickness by direct and indirect gains and genotypic correlations. The number of latex vessel rings showed the best correlations, correlating positively and significantly with girth and bark thickness. Selection gains among progenies were greater than within progeny for all the variables analyzed. Total gains obtained were high, especially for girth increase and rubber yield, which were 93.38 and 105.95%, respectively. Young progeny selection can maximize the expected genetic gains, reducing the rubber tree selection cycle.
Resumo:
Indirect reciprocity is a form of reciprocity where help is given to individuals based on their reputation. In indirect reciprocity, bad acts (such as not helping) reduce an individual's reputation while good acts (such as helping) increase an individual's reputation. Studies of indirect reciprocity assume that good acts and bad acts are weighted equally when assessing the reputation of an individual. As different information can be processed in different ways, this is not likely to be the case, and it is possible that an individual could bias an actor's reputation by putting more weight to acts of defection (not helping) than acts of co-operation (helping) or vice versa. We term this difference 'judgement bias', and build an individual-based model of image scoring to investigate the conditions under which it may evolve. We find that, if the benefits of co-operation are small, judgement bias is weighted towards acts perceived to be bad; if the benefits are high, the reverse is true. Our result is consistent under both scoring and standing strategies, and we find that allowing judgement bias to evolve increases the level of co-operation in the population.
Resumo:
PURPOSE: To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. METHODS: Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. RESULTS: Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. CONCLUSIONS: Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.
Resumo:
With the increasing availability of various 'omics data, high-quality orthology assignment is crucial for evolutionary and functional genomics studies. We here present the fourth version of the eggNOG database (available at http://eggnog.embl.de) that derives nonsupervised orthologous groups (NOGs) from complete genomes, and then applies a comprehensive characterization and analysis pipeline to the resulting gene families. Compared with the previous version, we have more than tripled the underlying species set to cover 3686 organisms, keeping track with genome project completions while prioritizing the inclusion of high-quality genomes to minimize error propagation from incomplete proteome sets. Major technological advances include (i) a robust and scalable procedure for the identification and inclusion of high-quality genomes, (ii) provision of orthologous groups for 107 different taxonomic levels compared with 41 in eggNOGv3, (iii) identification and annotation of particularly closely related orthologous groups, facilitating analysis of related gene families, (iv) improvements of the clustering and functional annotation approach, (v) adoption of a revised tree building procedure based on the multiple alignments generated during the process and (vi) implementation of quality control procedures throughout the entire pipeline. As in previous versions, eggNOGv4 provides multiple sequence alignments and maximum-likelihood trees, as well as broad functional annotation. Users can access the complete database of orthologous groups via a web interface, as well as through bulk download.
Resumo:
Isotope ratio mass spectrometry (IRMS) has recently made its appearance in the forensic community. This high-precision technology has already been applied to a broad range of forensic fields such as illicit drugs, explosives and flammable liquids, where current, routinely used techniques have limited powers of discrimination. The conclusions drawn from the majority of these IRMS studies appear to be very promising. Used in a comparative process, as in food or drug authentication, the measurement of stable isotope ratios is a new and remarkable analytical tool for the discrimination or the identification of a substance with a definite source or origin. However, the research consists mostly of preliminary studies. The significance of this 'new' piece of information needs to be evaluated in light of a forensic framework to assess the actual potential and validity of IRMS, considering the characteristics of each field. Through the isotopic study of black powder, this paper aims at illustrating the potential of the method and the limitations of current knowledge in stable isotopes when facing forensic problems.
Resumo:
In the cerebral cortex, the activity levels of neuronal populations are continuously fluctuating. When neuronal activity, as measured using functional MRI (fMRI), is temporally coherent across 2 populations, those populations are said to be functionally connected. Functional connectivity has previously been shown to correlate with structural (anatomical) connectivity patterns at an aggregate level. In the present study we investigate, with the aid of computational modeling, whether systems-level properties of functional networks-including their spatial statistics and their persistence across time-can be accounted for by properties of the underlying anatomical network. We measured resting state functional connectivity (using fMRI) and structural connectivity (using diffusion spectrum imaging tractography) in the same individuals at high resolution. Structural connectivity then provided the couplings for a model of macroscopic cortical dynamics. In both model and data, we observed (i) that strong functional connections commonly exist between regions with no direct structural connection, rendering the inference of structural connectivity from functional connectivity impractical; (ii) that indirect connections and interregional distance accounted for some of the variance in functional connectivity that was unexplained by direct structural connectivity; and (iii) that resting-state functional connectivity exhibits variability within and across both scanning sessions and model runs. These empirical and modeling results demonstrate that although resting state functional connectivity is variable and is frequently present between regions without direct structural linkage, its strength, persistence, and spatial statistics are nevertheless constrained by the large-scale anatomical structure of the human cerebral cortex.