997 resultados para hydrothermal growth
Resumo:
Inulin was used as a prebiotic to improve the quality and consistency of skim milk fermented by Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), Lactobacillus bulgaricus (Lb) and Bifidobacterium lactis (BI) with Streptococcus thermophilus (St), either in binary co-cultures or in cocktail containing all microorganisms. We compared, either in the presence of 40 mg inulin g(-1) or not, the results of the maximum acidification rate (V(max)) and the times to reach it (t(max)), to reach pH 5.0 (t(PH5.0)) and to complete the fermentation (t(f)). Post-acidification, lactic acid formation and cell counts were also compared after either 1 day (D1) or 7 days of storage at 4 degrees C (N). In co-culture, inulin addition to the milk increased V(max), decreased t(max) and t(f), favored post-acidification and exerted a bifidogenic effect. S. thermophilus proved to stimulate the metabolism of the other lactic bacteria and enhanced the product features. After D7, a significant prebiotic effect of inulin was observed in all co-cultures. Either after D1 or D7, the enumerations of Lr and BI in mixed culture markedly decreased compared to their respective co-cultures because of greater competition for the same substrates. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Feijo, T.S., Cardozo, SX, Daleprane, J.B., Sabaa Srur, A.U.O. & Boaventura, G.T. [Evaluation of the influence of the proteinic quality of the genetically modified and organic soy beans in the growth of two generations of rats Wistar.] Avaliacao da influencia da qualidade proteica da soja geneticamente modificada e organica no crescimento de duas geracoes de ratos Wistar. Revista Brasileira de Medicina Veterinaria, 31(3):139-144, 2009. Programa de Pos-Graduacao em Patologia, Hospital Universitario Antonio Pedro. Centro de Ciencias Medicas, Universidade Federal Fluminense. Rua Marques do Parana, 303, Niteroi, RJ 24030-210, Brasil. E-mail: sergian@ufnj.br Sixty four Wistar rats, male of two consecutive generations determined as F(0) and F(1) were used to study the cumulative effect of two variety soy beans, cultivated with organic seasoning and genetically modified, The animals of each generation were divided into three groups of eight rats each fed on diets consisted of organic soy, soy genetically modified and casein respectively. All the animals received water and the diet ad libitum for period of 28 days. Where the diet consumption and the animals weight were evaluated. After statistic analysis of the results no expressive differences were observed on diet consumption, weight variation, protein efficient ratio and food efficiency ratio on same group of animals in the different generations. On the other hand, significant difference was found on final proteinic retention on animal descendants of the same groups; however of different generations. With this, the supplementation of organic soy with L-cistin provided better avail of this protein in relation to the protein of the soy genetically modified. However, this supplementation did not reveal efficiency in keeping the proteinic employment from one generation to another one, since soy varieties presented better performance on F(0) generation when compared with F(1).
Resumo:
Six antifungal agents at subinhibitory concentrations were used for investigating their ability to affect the growth and branching in Neurospora crassa. Among the antifungals herein used, the azole agent ketoconazole at 0.5 mu g/ml inhibited radial growth more than fluconazole at 5.0 mu g/ml while amphotericin B at 0.05 mu g/ml was more effective than nystatin at 0.05 mu g/ml. Morphological alterations in hyphae were observed in the presence of griseofulvin, ketoconazole and terbinafine at the established concentrations. The antifungal agents were more effective on vegetative growth than on conidial germination. Terbinafine markedly reduced growth unit length (GU) by 54.89%, and caused mycelia to become hyperbranched. In all cases, there was a high correlation between hyphal length and number of tips (r > 0.9). All our results showed highly significant differences by ANOVA, (p < 0.001, alpha = 0.05). Considering that the hyphal tip is the main interface between the fungus and its environment/through which enzymes and toxins are secreted and nutrients absorbed, it would not be desirable to obtain a hyperbranched mycelia with inefficient doses of antifungal drugs.
Resumo:
The effects of PLC and Pkc inhibitors on Aspergillus nidulans depend on the carbon source. PLC inhibitors Spm and C48/80 delayed the first nuclear division in cultures growing on glucose, but stimulated it in media supplemented with pectin. Less intense were these effects on the mutant transformed with PLC-A gene rupture (AP27). Neomycin also delayed the germination in cultures growing on glucose or pectin; however, on glucose, the nuclear division was inhibited whereas in pectin it was stimulated. These effects were minor in AP27. The effects of Ro-31-8425 and BIM (both Pkc inhibitors) were also opposite for cultures growing on glucose or pectin. On glucose cultures of both strains BIM delayed germination and the first nuclear division, whereas on pectin both parameters were stimulated. Opposite effects were also detected when the cultures were growing on glucose or pectin in the presence of Ro-31-8425.
Resumo:
Light conditions during mycelial growth are known to influence fungi in many ways. The effect of visible-light exposure during mycelial growth was investigated on conidial tolerance to UVB irradiation and wet heat of Metarhizium robertsii, an insect-pathogenic fungus. Two nutrient media and two light regimens were compared. Conidia were produced on (A) potato dextrose agar plus yeast extract medium (PDAY) (A1) under dark conditions or (A2) under continuous visible light (provided by two fluorescent lamps with intensity 5.4 W m-2). For comparison, the fungus was also produced on (B) minimal medium (MM) under continuous-dark incubation, which is known to produce conidia with increased tolerance to heat and UVB radiation. The UVB tolerances of conidia produced on PDAY under continuous visible light were twofold higher than conidia produced on PDAY medium under dark conditions, and this elevated UVB tolerance was similar to that of conidia produced on MM in the dark. The heat tolerance of conidia produced under continuous light was, however, similar to that of conidia produced on MM or PDAY in the dark. Conidial yield on PDAY medium was equivalent when the fungus was grown either under continuous-dark or under continuous-light conditions.
Resumo:
In this work we compare the hydrothermal stability performance of a Templated Molecular Sieve Silica (TMSS) membrane against a standard, non-templated Molecular Sieve Silica (MSS) membrane. The tests were carried under dry and wet (steam) conditions for single gas (He, H2, CO and CO2) at 1-2 atm membrane pressure drop at 200oC. Single gas TMSS membrane H2, permeance and H2/CO permselectivity was found to be 2.05 x 10-8 mols.m-2.s-1.Pa-1 and 15, respectively. The MSS membrane showed similar selectivity, but increased overall flux. He permeance through membranes decayed at a rate of 4-5 x 10-10 mols.m-2.s-1.Pa-1 per day regardless of membrane ambience (dry or wet). Although H2/CO permselectivity of the TMSS membrane slightly improved from 15 to 18 after steam testing, the MSS membrane resulted in significant reduction from 16 to 8.3. In addition, membrane regeneration after more than 50 days resulted in the TMSS membrane reverting to its original permeation levels while no significant improvements were observed for the MSS membra ne. Results showed that the TMSS membrane had enhanced hydrothermal stability and regeneration ability.
Resumo:
A new class of hybrid molecular sieve silica (MSS) membranes is developed and tested against standard and organic templated membranes. The hybrid membrane is synthesized by the standard sol-gel process, integrating a template (methyltriethoxysilane - MTES) and a C6 surfactant (triethylhexylammonium bromide) into the silica film matrix. After hydro treatment under a relative humidity of 96% for 50h, the hybrid membrane shows no changes in its gas separation capabilities or energy of mobility. The structural characteristics and integrity of the hybrid membrane are retained due to a high concentration of organophilic functional groups and alkoxides observed using 29 Si NMR. In contrast, the structural integrity of the membranes prepared with non-templated films deteriorated during the hydro treatment due to a large percentage of silanol groups (Si-OH) which react with water. The hybrid membranes underwent a decrease in the H2/CO2 selectivity of only 1% whereas for the non-templated membrane a 21% decrease was observed. The transport mechanism of the hybrid membranes is activated as permeation increased with temperature. The activation energy for the permeation of H2 is positive while negative for CO2. The H2 permeation obtained was 3x 10 -8 mol.m -2 .s -1 .Pa -1 and permselectivities for H2/CO2 and H2/N2 varied between 1-7 and 31-34, respectively.
Resumo:
For fuel cell CO clean up application, the presence of water with silica membranes greatly reduces their selectivity to CO. We show results of a new functional carbonised template membrane of around 13nm thickness which offered hydrothermal stability with no compromise to the membrane’s H2/CO permselectivity of 16. Lost permeance was also regenerated.
Resumo:
The level set method has been implemented in a computational volcanology context. New techniques are presented to solve the advection equation and the reinitialisation equation. These techniques are based upon an algorithm developed in the finite difference context, but are modified to take advantage of the robustness of the finite element method. The resulting algorithm is tested on a well documented Rayleigh–Taylor instability benchmark [19], and on an axisymmetric problem where the analytical solution is known. Finally, the algorithm is applied to a basic study of lava dome growth.
Resumo:
Copper concentrate (chalcopyrite) was granulated in a rotating drum with a diameter of 0.3 m and a length of 0.2 m. Water was used as the binder and it was sprayed onto the powder bed with a nozzle. This material exhibited induction type behaviour, which was defined by Iveson and Litster [AIChE J. 44 (1998) 1510]. Induction type behaviour is characterized by the occurrence of an induction stage, during which the granules are gradually being compacted and little or no growth occurs. At the end of this induction stage, binder liquid is squeezed from the interior of the granules onto the granule surface and the granules are then surface-wet. This results in a rapid growth rate of the granules. Different types of experiments were conducted. The influence of the nozzle pressure and the distance from the nozzle to the powder bed on the growth behaviour of the granules as well as on the binder distribution was examined. The results of these experiments led to the postulation of a modified mechanism for induction type behaviour: it was found that after the binder was delivered, there were large granules containing a high amount of binder and small granules containing less binder. During the induction stage, the granules are compacted and binder liquid continuously appears at the surface of the large granules. These wet spots that are continuously being formed pick up the dry and small granules. When all the small granules have been picked up, further expulsion of binder liquid onto the granules' surface results in granules that remain surface-wet. This phenomenon marks the end of the induction stage and it coincides with the disappearance of the small granules. The hypothesis was tested by selectively removing the smaller granules during an experiment. As expected, this resulted in a shorter induction time.
Resumo:
[beta]-Hydroxy [beta]-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, is one of the latest dietary supplements promoted to enhance gains in strength and lean body mass associated with resistance training. Unlike anabolic hormones that induce muscle hypertrophy by increasing muscle protein synthesis, HMB is claimed to influence strength and lean body mass by acting as an anticatabolic agent, minimising protein breakdown and damage to cells that may occur with intense exercise. Research on HMB has recently tested this hypothesis, under the assumption that it may be the active compound associated with the anticatabolic effects of leucine and its metabolites. While much of the available literature is preliminary in nature and not without methodological concern, there is support for the claims made regarding HMB supplementation, at least in young, previously untrained individuals. A mechanism by which this may occur is unknown, but research undertaken to date suggests there may be a reduction in skeletal muscle damage, although this has not been assessed directly. The response of resistance trained and older individuals to HMB administration is less clear. While the results of research conducted to date appear encouraging, caution must be taken when interpreting outcomes as most manuscripts are presented in abstract form only, not having to withstand the rigors of peer review. Of the literature reviewed relating to HMB administration during resistance training, only 2 papers are full manuscripts appearing in peer reviewed journals. The remaining 8 papers are published as abstracts only, making it difficult to critically review the research. There is clearly a need for more tightly controlled, longer duration studies to verify if HMB enhances strength and muscular hypertrophy development associated with resistance training across a range of groups, including resistance trained individuals.
Resumo:
We report on a quantitative study of the growth process of 87Rb Bose-Einstein condensates. By continuous evaporative cooling we directly control the thermal cloud from which the condensate grows. We compare the experimental data with the results of a theoretical model based on quantum kinetic theory. We find quantitative agreement with theory for the situation of strong cooling, whereas in the weak cooling regime a distinctly different behavior is found in the experiment.
Resumo:
Modeling volcanic phenomena is complicated by free-surfaces often supporting large rheological gradients. Analytical solutions and analogue models provide explanations for fundamental characteristics of lava flows. But more sophisticated models are needed, incorporating improved physics and rheology to capture realistic events. To advance our understanding of the flow dynamics of highly viscous lava in Peléean lava dome formation, axi-symmetrical Finite Element Method (FEM) models of generic endogenous dome growth have been developed. We use a novel technique, the level-set method, which tracks a moving interface, leaving the mesh unaltered. The model equations are formulated in an Eulerian framework. In this paper we test the quality of this technique in our numerical scheme by considering existing analytical and experimental models of lava dome growth which assume a constant Newtonian viscosity. We then compare our model against analytical solutions for real lava domes extruded on Soufrière, St. Vincent, W.I. in 1979 and Mount St. Helens, USA in October 1980 using an effective viscosity. The level-set method is found to be computationally light and robust enough to model the free-surface of a growing lava dome. Also, by modeling the extruded lava with a constant pressure head this naturally results in a drop in extrusion rate with increasing dome height, which can explain lava dome growth observables more appropriately than when using a fixed extrusion rate. From the modeling point of view, the level-set method will ultimately provide an opportunity to capture more of the physics while benefiting from the numerical robustness of regular grids.
Resumo:
Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥ 1.7 µM (corresponding to 90 % maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.