986 resultados para hydrophobic interactions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gelliquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth and metabolism of fungi can be curtailed by chaotropic solutes and hydrophobic substances, both of which can weaken or inhibit non-covalent interactions within and between macromolecular systems. Here we explore the potential to utilize the fungistatic and fungicidal activities of such stressors as the basis for commercial formulations. A method was developed for the quantification of chaotropicity, which can be used for chemically diverse substances, in order elucidate roles of chaotropicity and hydrophobicity in microbial ecology (both of which are sufficiently potent to limit the Earth’s microbial biosphere). A large number of naturally occurring substances act as chaotropic or hydrophobic stressors including aliphatic alcohols, salts such as MgCl2, aromatics such as phenol, and hydrocarbons such as hexane and octene. We suggest that these stress parameters provide the (hitherto unidentified) modes-of-action for some extant antifungal products. The findings are discussed in relation to the development of a new generation of antifungals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La réparation de l’ADN par excision des nucléotides (NER) est un mécanisme capable de retirer une large variété de lésions causant une distorsion de la double hélice, comme celles causées par les rayons ultraviolets (UV). Comme toutes les voies de réparation de l’ADN, la NER contribue à la prévention de la carcinogénèse en prévenant la mutation de l’ADN. Lors de ce processus, il y a d’abord reconnaissance de la lésion par la protéine XPC/Rad4 (humain/levure) qui recrute ensuite TFIIH. Ce complexe déroule l’ADN par son activité hélicase et recrute l’endonucléase XPG/Rad2 ainsi que d’autres protéines nécessaires à l’excision de l’ADN. Lors de son arrivée au site de lésion, XPG/Rad2 déplace XPC/Rad4. TFIIH agit également lors de la transcription de l’ADN, entre autres par son activité hélicase. Outre cette similarité de la présence de TFIIH lors de la transcription et la réparation, il est possible de se demander en quoi les deux voies sont similaires. Nous nous sommes donc intéressés aux interactions impliquant TFIIH et la machinerie de réparation de l’ADN. Nous avons donc entrepris une caractérisation structurale et fonctionnelle de ces interactions. Nous avons découvert que Rad2 et Rad4 possèdent un motif d’interaction en nous basant sur d’autres interactions de la sous-unité Tfb1 de TFIIH. Par calorimétrie à titrage isotherme, nous avons observé que les segments de ces deux protéines contenant ce motif interagissent avec une grande affinité au domaine PH de Tfb1. Le site de liaison de ces segments sur Tfb1PH est très semblable au site de liaison du domaine de transactivation de p53 et au domaine carboxy-terminal de TFIIEα avec Tfb1PH, tel que démontré par résonance magnétique nucléaire (RMN). De plus, tous ces segments peuvent faire compétition les uns aux autres pour la liaison à Tfb1PH. Nous avons aussi démontré in vivo chez la levure qu’une délétion de Tfb1PH crée une sensibilité aux radiations UV. De plus, la délétion de multiples segments de Rad2 et Rad4, dont les segments d’interaction à Tfb1PH, est nécessaire pour voir une sensibilité aux rayons UV. Ainsi, de multiples interactions sont impliquées dans la liaison de Rad2 et Rad4 à TFIIH. Finalement, les structures des complexes Rad2-Tfb1PH et Rad4-Tfb1PH ont été résolues par RMN. Ces structures sont identiques entre elles et impliquent des résidus hydrophobes interagissant avec des cavités peu profondes de Tfb1PH. Ces structures sont très semblables à la structure de TFIIEα-p62PH. Ces découvertes fournissent ainsi un lien important entre la transcription et la réparation de l’ADN. De plus, elles permettent d’émettre un modèle du mécanisme de déplacement de XPC/Rad4 par XPG/Rad2 au site de dommage à l’ADN. Ces connaissances aident à mieux comprendre les mécanismes de maintient de la stabilité génomique et peuvent ainsi mener à développer de nouvelles thérapies contre le cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions of sodium dodecyl sulfate (SDS) with poly(ethylene oxide)/poly(alkylene oxide) (E/A) block copolymers are explored in this study: With respect to the specific compositional characteristics of the copolymer, introduction of SDS can induce fundamentally different effects to the self-assembly behavior of E/A copolymer solutions. In the case of the E18B10-SDS system (E = poly(ethylene oxide) and B = poly(butylene oxide)) development of large surfactant-polymer aggregates was observed. In the case of B20E610-SDS, B12E227B12-SDS, E40B10E40-SDS, E19P43E19-SDS (P = poly(propylene oxide)), the formation of smaller particles compared to pure polymeric micelles points to micellar suppression induced by the ionic surfactant. This effect can be ascribed to a physical binding between the hydrophobic block of unassociated macromolecules and the non-polar tail of the surfactant. Analysis of critical micelle concentrations (cmc*) of polymer-surfactant aqueous solutions within the framework of regular solution theory for binary surfactants revealed negative deviations from ideal behavior for E40B10E40-SDS and E19P43E19-SDS, but positive deviations for E18B10-SDS. Ultrasonic studies performed for the E19P43E19-SDS system enabled the identification of three distinct regions, corresponding to three main steps of the complexation; SDS absorption to the hydrophobic backbone of polymer, development of polymer-surfactant complexes and gradual breakdown of the mixed aggregates. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three series of water-soluble cationic copolymers have been synthesised by free-radical copolymerisation of [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (MADQUAT) with methyl acrylate (MA), butyl acrylate (BA) and butyl methacrylate (BMA). The interactions between these copolymers and porcine stomach mucin have been studied in aqueous solutions using dynamic light scattering, zeta-potential measurements, turbidimetric titration and transmission electron microscopy (TEM). It was demonstrated that mixing aqueous dispersions of mucin with solutions of the cationic copolymers results in significant changes in size distribution and zeta-potential of its particles. It was found that an increase in the content of hydrophobic groups in copolymers leads to more efficient adsorption of macromolecules on the surface of mucin particles, which evidences the importance of hydrophobic effects in mucoadhesion. The efficiency of mucoadhesive interactions was found to be significantly dependent on pH, which affects the surface charge and aggregation stability of mucin. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The indolines and thionins are basic, amphiphilic and cysteine-rich proteins found in cereals; puroindoline-a (Pin-a) and β-purothionin (β-Pth) are members of these families in wheat (Triticum aestivum). Pin-a and β-Pth have been suggested to play a significant role in seed defence against microbial pathogens, making the interaction of these proteins with model bacterial membranes an area of potential interest. We have examined the binding of these proteins to lipid monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) using a combination of neutron reflectometry, Brewster angle microscopy, and infrared spectroscopy. Results showed that both Pin-a and β-Pth interact strongly with condensed phase DPPG monolayers, but the degree of penetration was different. β-Pth was shown to penetrate the lipid acyl chain region of the monolayer and remove lipids from the air/liquid interface during the adsorption process, suggesting this protein may be able to both form membrane spanning ion channels and remove membrane phospholipids in its lytic activity. Conversely, Pin-a was shown to interact mainly with the head-group region of the condensed phase DPPG monolayer and form a 33 Å thick layer below the lipid film. The differences between the interfacial structures formed by these two proteins may be related to the differing composition of the Pin-a and β-Pth hydrophobic regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was the production and characterization of gelatin-based films using hydrophobic plasticizers derived from citric acid and soy lecithin as emulsifier. The films were characterized as to their mechanic properties, permeability to water vapor, opacity, morphology and possible interactions using Fourier transform infrared spectroscopy. Tensile strength values (TS) varied from 36 to 103 MPa, how-ever, the increase in the concentration of plasticizers (acetyltributyl citrate and tributyl citrate) reduced TS by 57% and no relation was observed between plasticizer quantities and the elongation in the quantities tested. Permeability to water vapor varied between 0.17 and 0.34 (g mm/m(2) h kPa), slightly increasing with the increase in concentration of plasticizers. The effectiveness in the use of soy lecithin emulsifier in the homogenization between the compounds could be proven by microscopic observation using confocal laser microscopy. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PilZ protein was originally identified as necessary for type IV pilus (T4P) biogenesis. Since then, a large and diverse family of bacterial PilZ homology domains have been identified, some of which have been implicated in signaling pathways that control important processes, including motility, virulence and biofilm formation. Furthermore, many PilZ homology domains, though not PilZ itself, have been shown to bind the important bacterial second messenger bis(3`-> 5`)cyclic diGMP (c-diGMP). The crystal structures of the PilZ orthologs from Xanthomonas axonopodis pv Citri (PilZ(XAC1133), this work) and from Xanthomonas campestris pv campestris (XC1028) present significant structural differences to other PilZ homologs that explain its failure to bind c-diGMP. NMR analysis of PilZ(XAC1133) shows that these structural differences are maintained in solution. In spite of their emerging importance in bacterial signaling, the means by which NZ proteins regulate specific processes is not clear. In this study, we show that PilZ(XAC1133) binds to PilB, an ATPase required for TV polymerization, and to the EAL domain of FiMX(XAC2398), which regulates TV biogenesis and localization in other bacterial species. These interactions were confirmed in NMR, two-hybrid and far-Western blot assays and are the first interactions observed between any PilZ domain and a target protein. While we were unable to detect phosphodiesterase activity for FimXX(AC2398) in vitro, we show that it binds c-diGMP both in the presence and in the absence of PilZ(XAC1133). Site-directed mutagenesis studies for conserved and exposed residues suggest that PilZ(XAC1133) interactions with FimX(XAC2398) and PilB(XAC3239) are mediated through a hydrophobic surface and an unstructured C-terminal extension conserved only in PilZ orthologs. The FimX-PilZ-PilB interactions involve a full set of ""degenerate"" GGDEF, EAL and PilZ domains and provide the first evidence of the means by which PilZ orthologs and FimX interact directly with the TP4 machinery. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of polyelectrolytes with oppositely charged ionic surfactants was studied at low surfactant concentrations using photochemical bound and free probes. Free probes migrate to initially formed pre-aggregates in systems with high charge- density polyelectrolytes, giving rise to excimer emission. For these systems the initial aggregation process seems to be due to electrostatic interactions. For larger surfactants or copolymers containing larger proportions of neutral monomer that interactions are of hydrophobic nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The N-terminus of the human dihydroorotate dehydrogenase (HsDHODH) has been described as important for the enzyme attachment in the inner mitochondrial membrane and possibly to regulate enzymatic activity. In this study, we synthesized the peptide acetyl-GDERFYAEHLMPTLQGLLDPESAHRL AVRFTSLGamide, comprising the residues 33-66 of HsDHODH N-terminal conserved microdomain. Langmuir monolayers and circular dichroism (CD) were employed to investigate the interactions between the peptide and membrane model, as micelles and monolayers of the lipids phosphatidylcholine (PC), 3-phosphatidylethanolamine (PE) and cardiolipin (CL). These lipids represent the major constituents of inner mitochondrial membranes. According to CD data, the peptide adopted a random structure in water, whereas it acquired α-helical structures in the presence of micelles. The π–A isotherms and polarization- modulated infrared reflection-absorption spectroscopy on monolayers showed that the peptide interacted with all lipids, but in different ways. In DPPC monolayers, the peptide penetrated into the hydrophobic region. The strongest initial interaction occurred with DPPE, but the peptide was expelled from this monolayer at high surface pressures. In CL, the peptide could induce a partial dissolution of the monolayer, leading to shorter areas at the monolayer collapse. These results corroborate the literature, where the HsDHODH microdomain is anchored into the inner mitochondrial membrane. Moreover, the existence of distinct conformations and interactions with the different membrane lipids indicates that the access to the enzyme active site may be controlled not only by conformational changes occurring at the microdomain of the protein, but also by some lipid-protein synergetic mechanism, where the HsDHODH peptide would be able to recognize lipid domains in the membrane. - See more at: http://www.eurekaselect.com/122062/article#sthash.1ZZbc7E0.dpuf

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information on the solvation in mixtures of water, W, and the ionic liquids, ILs, 1-allyl-3-R-imidazolium chlorides; R = methyl, 1-butyl, and 1-hexyl, has been obtained from the responses of the following solvatochromic probes: 2,6-dibromo-4-[(E)-2-(1-R-pyridinium-4-yl)ethenyl] phenolate, R = methyl, MePMBr2; 1-octyl, OcPMBr(2), and the corresponding quinolinium derivative, MeQMBr(2). A model developed for solvation in binary mixtures of W and molecular solvents has been extended to the present mixtures. Our objective is to assess the relevance to solvation of hydrogen-bonding and the hydrophobic character of the IL and the solvatochromic probe. Plots of the medium empirical polarity, E-T(probe) versus its composition revealed non-ideal behavior, attributed to preferential solvation by the IL and, more efficiently, by the IL-W hydrogen-bonded complex. The deviation from linearity increases as a function of increasing number of carbon atoms in the alkyl group of the IL, and is larger than that observed for solvation by W plus molecular solvents (1-propanol and 2-(1-butoxy)ethanol) that are more hydrophobic than the ILs investigated. This enhanced deviation is attributed to the more organized structure of the ILs proper, which persists in their aqueous solutions. MeQMBr(2) is more susceptible to solvent lipophilicity than OcPMBr(2), although the former probe is less lipophilic. This enhanced susceptibility agrees with the important effect of annelation on the contributions of the quinonoid and zwitterionic limiting structures to the ground and excited states of the probe, hence on its response to both medium composition and lipophilicity of the IL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel single step synthetic procedure for hydrophobically modified alkali soluble latexes (HASE) via a miniemulsion-analogous method is presented. This facile method simplifies the copolymerization of the monomers with basically “opposite” character in terms of their hydrophilic/hydrophobic nature, which represent one of the main challenges in water based systems. Considered systems do not represent classical miniemulsions due to a high content of water soluble monomers. However, the polymerization mechanism was found to be rather similar to miniemulsion polymerization process.rnThe influence of the different factors on the system stability has been investigated. The copolymerization behavior studies typically showed strong composition drifts during copolymerization. It was found that the copolymer composition drift can be suppressed via changing the initial monomer ratio.rnThe neutralization behavior of the obtained HASE systems was investigated via potentiometric titration. The rheological behavior of the obtained systems as a function of the different parameters, such as pH, composition (ultrahydrophobe content) and additive type and content has also been investigated.rnDetailed investigation of the storage and loss moduli, damping factor and the crossover frequencies of the samples showed that at the initial stages of the neutralization the systems show microgel-like behavior.rnThe dependence of the rheological properties on the content and the type of the ultrahydrophobe showed that the tuning of the mechanical properties can be easily achieved via minor (few percent) but significant changes in the content of the latter. Besides, changing the hydrophobicity of the ultrahydrophobe via increasing the carbon chain length represents another simple method for achieving the same results.rnThe influence of amphiphilic additives (especially alcohols) on the rheological behavior of the obtained systems has been studied. An analogy was made between micellation of surfactants and the formation of hydrophobic domains between hydrophobic groups of the polymer side chain.rnDilution induced viscosity reduction was investigated in different systems, without or with different amounts or types of the amphiphilic additive. Possibility of the controlled response to dilution was explored. It was concluded that the sensitivity towards dilution can be reduced, and in extreme cases even the increase of the dynamic modulus can be observed, which is of high importance for the setting behavior of the adhesive material.rnIn the last part of this work, the adhesive behavior of the obtained HASE systems was investigated on different substrates (polypropylene and glass) for the standard labeling paper. Wet tack and setting behavior was studied and the trends for possible applications have been evaluated.rnThe novel synthetic procedure, investigation of rheological properties and the possibility of the tuning via additives, investigated in this work create a firm background for the development of the HASE based adhesives as well as rheology modifiers with vast variety of possible applications due to ease of tuning the mechanical and rheological properties of the systems.