916 resultados para hole-board
Resumo:
The Madelung energy of YBa2Cu4O8 has been computed for different locations of the hole in the structure. The lowest-energy configuration corresponds to partial localization of the hole on O(1) and O(11) sites.
Resumo:
The superconducting transition temperature, Tc, of several series of cuprates shows a nonlinear dependence on the hole concentration, nh, determined by chemical titrations. The tc becomes maximum when nh is in the 0.12-0.15 range in cuprates containing a single Cu-O layer and around 0.2 in cuprates containing two Cu-O layers.
Resumo:
Structure and superconducting properties of Tl1?yPbyY1?xCaxSr2Cu2O7 (y=0.0, 0.1, 0.25 and 0.5) , derived from the parent insulator TlYSr2Cu2O7, have been investigated for different values of x. XANES studies show Pb to be in the 4+ state while Tl is in the 3+ state, suggesting thereby that in this series, (x?y) approximately corresponds to the hole concentration. The in-plane Cu---O distance decreases with increase in x for all values of y. The apical Cu---O distance as well as the Tl(Pb)---O(2) distance show anomalies at x=0.5 in the series with y=0.25; at this composition, Tc also reaches a maximum. In general, the composition (value of x) at which the Tc of Tl1?yPbyY1?xCaxSr2Cu2O7 reaches a maximum depends on the Pb content and the maximum Tc itself increases with increase in y, reaching a value of 105 K at y=0.5. More interestingly, a maximum Tc occurs at an (x?y) value of not, vert, similar0.25, which is close to the hole concentration at maximum Tc in other cuprate superconductors containing two CuO2 layers.
Resumo:
The Madelung potential and formation energy of the superconducting compound YBa2Cu3O7 have been computed for hole localization at different sites in the crystal. The cases considered include Cu3+ ion at Cu(1) and Cu(2) sites, O− ion at O(1), O(2), O(3) and O(4) sites and combinations of O− and Cu3+ ions at O(4) and Cu(1) and O(2,3) and Cu(2) sites. The two lowest-energy configurations correspond to Cu3+ ion at Cu(1) site and O− ion at O(4) site. The difference in formation energy between those configurations is relatively small. The next preferred configuration corresponds to simultaneous partial localization of the hole at Cu (1) site and O(1) site. Other configurations are much less stable. The results suggest a resonating or fluctuating valence model for YBa2Cu3O7.
Resumo:
Magnetization measurements below 50 K on ceramic La2?ySryCu1?xNixO4+? (y = 0.1, 0.2; 0less-than-or-equals, slantxless-than-or-equals, slant0.5) show a progressive diminution of superconducting properties with increasing x. The larger suppressive action of Ni in the y=0.1 system than that for y=0.2 is attributed to the hole-compensating effect of Ni3+. The assumption that nickel is in the 3+ state satisfactorily explains: (1) the reduction in hole concentration, (2) a right-shift of the Tc versus y curve with x, and (3) the low magnetic moment carried by Ni atoms, in the La2?ySryCu1?xNixO4+? system.
Resumo:
We report an extended x-ray absorption fine-structure investigation on the Mn K absorption edge in La1-xCaxMnO3 as a function of temperature and magnetic field. The results provide microscopic evidence that the modifications in the local structure around Mn atomic sites, as a function of temperature and applied magnetic field, are directly related to the magneto-transport properties of these materials.
Resumo:
Using the fact the BTZ black hole is a quotient of AdS(3) we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. We show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop. The Landau-Lifshitz equations from the spin chain can also be identified with the sigma model equations of motion.
Resumo:
Water-rock reactions are driven by the influx of water, which are out of equilibrium with the mineral assemblage in the rock. Here a mass balance approach is adopted to quantify these reactions. Based on field experiments carried out in a granito-gneissic small experimental watershed (SEW), Mule Hole SEW (similar to 4.5 km(2)), quartz, oligoclase, sericite, epidote and chlorite are identified as the basic primary minerals while kaolinite, goethite and smectite are identified as the secondary minerals. Observed groundwater chemistry is used to determine the weathering rates, in terms of `Mass Transfer Coefficients' (MTCs), of both primary and secondary minerals. Weathering rates for primary and secondary minerals are quantified in two steps. In the first step, top red soil is analyzed considering precipitation chemistry as initial phase and water chemistry of seepage flow as final phase. In the second step, minerals present in the saprolite layer are analyzed considering groundwater chemistry as the output phase. Weathering rates thus obtained are converted into weathering fluxes (Q(weathering)) using the recharge quantity. Spatial variability in the mineralogy observed among the thirteen wells of Mule Hole SEW is observed to be reflected in the MTC results and thus in the weathering fluxes. Weathering rates of the minerals in this silicate system varied from few 10 mu mol/L (in case of biotite) to 1000 s of micromoles per liter (calcite). Similarly, fluxes of biotite are observed to be least (7 +/- 5 mol/ha/yr) while those of calcite are highest (1265 791 mol/ha/yr). Further, the fluxes determined annually for all the minerals are observed to be within the bandwidth of the standard deviation of these fluxes. Variations in these annual fluxes are indicating the variations in the precipitation. Hence, the standard deviation indicated the temporal variations in the fluxes, which might be due to the variations in the annual rainfall. Thus, the methodology adopted defines an inverse way of determining weathering fluxes, which mainly contribute to the groundwater concentration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Modulation-doped two-dimensional hole gas structures consisting of a strained germanium channel on relaxed Ge0.7Si0.3 buffer layers were grown by molecular-beam epitaxy. Sample processing was optimized to substantially reduce the contribution from the parasitic conducting layers. Very high hall mobilities of 1700 cm2/V s for holes were observed at 295 K which are the highest reported to date for any kind of p-type silicon-based heterostructures. Hall measurements were carried out from 13 to 300 K to determine the temperature dependence of the mobility and carrier concentration. The carrier concentration at room temperature was 7.9×1011 cm−2 and decreased by only 26% at 13 K, indicating very little parallel conduction. The high-temperature mobility obeys a T−α behavior with α∼2, which can be attributed to intraband optical phonon scattering.