994 resultados para historical images
Resumo:
Robust facial expression recognition (FER) under occluded face conditions is challenging. It requires robust algorithms of feature extraction and investigations into the effects of different types of occlusion on the recognition performance to gain insight. Previous FER studies in this area have been limited. They have spanned recovery strategies for loss of local texture information and testing limited to only a few types of occlusion and predominantly a matched train-test strategy. This paper proposes a robust approach that employs a Monte Carlo algorithm to extract a set of Gabor based part-face templates from gallery images and converts these templates into template match distance features. The resulting feature vectors are robust to occlusion because occluded parts are covered by some but not all of the random templates. The method is evaluated using facial images with occluded regions around the eyes and the mouth, randomly placed occlusion patches of different sizes, and near-realistic occlusion of eyes with clear and solid glasses. Both matched and mis-matched train and test strategies are adopted to analyze the effects of such occlusion. Overall recognition performance and the performance for each facial expression are investigated. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the high robustness and fast processing speed of our approach, and provide useful insight into the effects of occlusion on FER. The results on the parameter sensitivity demonstrate a certain level of robustness of the approach to changes in the orientation and scale of Gabor filters, the size of templates, and occlusions ratios. Performance comparisons with previous approaches show that the proposed method is more robust to occlusion with lower reductions in accuracy from occlusion of eyes or mouth.
Resumo:
The aim of this on-going research is to interrogate the era of colonialism in Australia (1896-1966) and the denial of paid employment of Aboriginal women. The 1897 Aborigines Protection and the Restriction of the Sale of Opium Act witnessed thousands of Aboriginal people placed on Government run reserves and missions. This resulted in all aspects of their lives being controlled through state mechanisms. Under various Acts of Parliament, Aboriginal women were sent to privately owned properties to be utilised as ‘domestic servants’ through a system of forced indentured labour, which continued until the 1970’s. This paper discusses the hidden histories of these women through the use of primary sources documents including records from the Australian Department of Native Affairs and Department of Home and Health. This social history research reveals that the practice of removing Aboriginal women from their families at the age of 12 or 13 and to white families was more common practice than not. These women were often: not paid, worked up to 15 hour days, not allowed leave and subjected to many forms of abuse. Wages that were meant to be paid were re-directed to other others, including the Government. Whilst the retrieval of these ‘stolen wages’ is now an on-going issue resulting in the Queensland Government in 2002 offering AUS $2,000 to $4,000 in compensation for a lifetime of work, Aboriginal women were also asked to waive their legal right to further compensation. There are few documented histories of these Aboriginal women as told through the archives. This hidden Aboriginal Australian women’s history needs to be revealed to better understand the experiences and depth of misappropriation of Aboriginal women as domestic workers. In doing so, it also reveals a more accurate reflection of women’s work in Australia.
Resumo:
This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluorescence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the large range of antigens that can be detected. However, it suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg. speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. We propose a novel automatic cell image classification method termed Cell Pyramid Matching (CPM), which is comprised of regional histograms of visual words coupled with the Multiple Kernel Learning framework. We present a study of several variations of generating histograms and show the efficacy of the system on two publicly available datasets: the ICPR HEp-2 cell classification contest dataset and the SNPHEp-2 dataset.
Resumo:
As the first academically rigorous interrogation of the generation of performance within the global frame of the motion capture volume, this research presents a historical contextualisation and develops and tests a set of first principles through an original series of theoretically informed, practical exercises to guide those working in the emergent space of performance capture. It contributes a new understanding of the framing of performance in The Omniscient Frame, and initiates and positions performance capture as a new and distinct interdisciplinary discourse in the fields of theatre, animation, performance studies and film.
Resumo:
The life history strategies of massive Porites corals make them a valuable resource not only as key providers of reef structure, but also as recorders of past environmental change. Yet recent documented evidence of an unprecedented increase in the frequency of mortality in Porites warrants investigation into the history of mortality and associated drivers. To achieve this, both an accurate chronology and an understanding of the life history strategies of Porites are necessary. Sixty-two individual Uranium–Thorium (U–Th) dates from 50 dead massive Porites colonies from the central inshore region of the Great Barrier Reef (GBR) revealed the timing of mortality to have occurred predominantly over two main periods from 1989.2 ± 4.1 to 2001.4 ± 4.1, and from 2006.4 ± 1.8 to 2008.4 ± 2.2 A.D., with a small number of colonies dating earlier. Overall, the peak ages of mortality are significantly correlated with maximum sea-surface temperature anomalies. Despite potential sampling bias, the frequency of mortality increased dramatically post-1980. These observations are similar to the results reported for the Southern South China Sea. High resolution measurements of Sr/Ca and Mg/Ca obtained from a well preserved sample that died in 1994.6 ± 2.3 revealed that the time of death occurred at the peak of sea surface temperatures (SST) during the austral summer. In contrast, Sr/Ca and Mg/Ca analysis in two colonies dated to 2006.9 ± 3.0 and 2008.3 ± 2.0, suggest that both died after the austral winter. An increase in Sr/Ca ratios and the presence of low Mg-calcite cements (as determined by SEM and elemental ratio analysis) in one of the colonies was attributed to stressful conditions that may have persisted for some time prior to mortality. For both colonies, however, the timing of mortality coincides with the 4th and 6th largest flood events reported for the Burdekin River in the past 60 years, implying that factors associated with terrestrial runoff may have been responsible for mortality. Our results show that a combination of U–Th and elemental ratio geochemistry can potentially be used to precisely and accurately determine the timing and season of mortality in modern massive Porites corals. For reefs where long-term monitoring data are absent, the ability to reconstruct historical events in coral communities may prove useful to reef managers by providing some baseline knowledge on disturbance history and associated drivers.
Resumo:
This report studies an algebraic equation whose solution gives the image system of a source of light as seen by an observer inside a reflecting spherical surface. The equation is looked at numerically using GeoGebra. Under the hypothesis that our galaxy is enveloped by a reflecting interface this becomes a possible model for many mysterious extra galactic observations.
Resumo:
The proliferation of news reports published in online websites and news information sharing among social media users necessitates effective techniques for analysing the image, text and video data related to news topics. This paper presents the first study to classify affective facial images on emerging news topics. The proposed system dynamically monitors and selects the current hot (of great interest) news topics with strong affective interestingness using textual keywords in news articles and social media discussions. Images from the selected hot topics are extracted and classified into three categorized emotions, positive, neutral and negative, based on facial expressions of subjects in the images. Performance evaluations on two facial image datasets collected from real-world resources demonstrate the applicability and effectiveness of the proposed system in affective classification of facial images in news reports. Facial expression shows high consistency with the affective textual content in news reports for positive emotion, while only low correlation has been observed for neutral and negative. The system can be directly used for applications, such as assisting editors in choosing photos with a proper affective semantic for a certain topic during news report preparation.
Resumo:
Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
Resumo:
Some of the oldest surviving examples of human creativity are items connected to death rituals. Despite the complexity of historical death rituals, the visceral sensations of grief are largely repressed or ignored in contemporary society – but where social ritual falters, art attempts to fill the gap. This catalogue essay was written to accompany Karike Ashworth's contemporary art exhibition, 'Lamentation', an exploration of grief, at The Hold Artspace in Brisbane.
Resumo:
Radiographs are commonly used to assess articular reduction of the distal tibia (pilon) fractures postoperatively, but may reveal malreductions inaccurately. While Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are potential 3D alternatives they generate metal-related artifacts. This study aims to quantify the artifact size from orthopaedic screws using CT, 1.5T and 3T MRI data. Three screws were inserted into one intact human cadaver ankle specimen proximal to and along the distal articular surface, then CT, 1.5T and 3T MRI scanned. Four types of screws were investigated: titanium alloy (TA), stainless steel (SS) (Ø = 3.5 mm), cannulated TA (CTA) and cannulated SS (CSS)(Ø = 4.0 mm, Ø empty core = 2.6 mm). 3D artifact models were reconstructed using adaptive thresholding. The artifact size was measured by calculating the perpendicular distance from the central screw axis to the boundary of the artifact in four anatomical directions with respect to the distal tibia. The artifact sizes (in the order of TA, SS, CTA and CSS) from CT were 2.0 mm, 2.6 mm, 1.6 mm and 2.0 mm; from 1.5T MRI they were 3.7 mm, 10.9 mm, 2.9 mm, and 9 mm; and 3T MRI they were 4.4 mm, 15.3 mm, 3.8 mm, and 11.6 mm respectively. Therefore, CT can be used as long as the screws are at a safe distance of about 2 mm from the articular surface. MRI can be used if the screws are at least 3 mm away from the articular surface except SS and CSS. Artifacts from steel screws were too large thus obstructed the pilon from being visualised in MRI. Significant differences (P < 0.05) were found in the size of artifacts between all imaging modalities, screw types and material types, except 1.5T versus 3T MRI for the SS screws (P = 0.063). CTA screws near the joint surface can improve postoperative assessment in CT and MRI. MRI presents a favourable non-ionising alternative when using titanium hardware. Since these factors may influence the quality of postoperative assessment, potential improvements in operative techniques should be considered.
Resumo:
Herbarium accession data offer a useful historical botanical perspective and have been used to track the spread of plant invasions through time and space. Nevertheless, few studies have utilised this resource for genetic analysis to reconstruct a more complete picture of historical invasion dynamics, including the occurrence of separate introduction events. In this study, we combined nuclear and chloroplast microsatellite analyses of contemporary and historical collections of Senecio madagascariensis, a globally invasive weed first introduced to Australia c. 1918 from its native South Africa. Analysis of nuclear microsatellites, together with temporal spread data and simulations of herbarium voucher sampling, revealed distinct introductions to south-eastern Australia and mid-eastern Australia. Genetic diversity of the south-eastern invasive population was lower than in the native range, but higher than in the mid-eastern invasion. In the invasive range, despite its low resolution, our chloroplast microsatellite data revealed the occurrence of new haplotypes over time, probably as the result of subsequent introduction(s) to Australia from the native range during the latter half of the 20th century. Our work demonstrates how molecular studies of contemporary and historical field collections can be combined to reconstruct a more complete picture of the invasion history of introduced taxa. Further, our study indicates that a survey of contemporary samples only (as undertaken for the majority of invasive species studies) would be insufficient to identify potential source populations and occurrence of multiple introductions.
Resumo:
The along-track stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor with 15 m resolution were used to generate Digital Elevation Model (DEM) on an area with low and near Mean Sea Level (MSL) elevation in Johor, Malaysia. The absolute DEM was generated by using the Rational Polynomial Coefficient (RPC) model which was run on ENVI 4.8 software. In order to generate the absolute DEM, 60 Ground Control Pointes (GCPs) with almost vertical accuracy less than 10 meter extracted from topographic map of the study area. The assessment was carried out on uncorrected and corrected DEM by utilizing dozens of Independent Check Points (ICPs). Consequently, the uncorrected DEM showed the RMSEz of ± 26.43 meter which was decreased to the RMSEz of ± 16.49 meter for the corrected DEM after post-processing. Overall, the corrected DEM of ASTER stereo images met the expectations.
Resumo:
This paper presents an online, unsupervised training algorithm enabling vision-based place recognition across a wide range of changing environmental conditions such as those caused by weather, seasons, and day-night cycles. The technique applies principal component analysis to distinguish between aspects of a location’s appearance that are condition-dependent and those that are condition-invariant. Removing the dimensions associated with environmental conditions produces condition-invariant images that can be used by appearance-based place recognition methods. This approach has a unique benefit – it requires training images from only one type of environmental condition, unlike existing data-driven methods that require training images with labelled frame correspondences from two or more environmental conditions. The method is applied to two benchmark variable condition datasets. Performance is equivalent or superior to the current state of the art despite the lesser training requirements, and is demonstrated to generalise to previously unseen locations.
Resumo:
In studies of germ cell transplantation, measureing tubule diameters and counting cells from different populations using antibodies as markers are very important. Manual measurement of tubule sizes and cell counts is a tedious and sanity grinding work. In this paper, we propose a new boundary weighting based tubule detection method. We first enhance the linear features of the input image and detect the approximate centers of tubules. Next, a boundary weighting transform is applied to the polar transformed image of each tubule region and a circular shortest path is used for the boundary detection. Then, ellipse fitting is carried out for tubule selection and measurement. The algorithm has been tested on a dataset consisting of 20 images, each having about 20 tubules. Experiments show that the detection results of our algorithm are very close to the results obtained manually. © 2013 IEEE.