988 resultados para heritage buildings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete is commonly used as a primary construction material for tall building construction. Load bearing components such as columns and walls in concrete buildings are subjected to instantaneous and long term axial shortening caused by the time dependent effects of "shrinkage", "creep" and "elastic" deformations. Reinforcing steel content, variable concrete modulus, volume to surface area ratio of the elements and environmental conditions govern axial shortening. The impact of differential axial shortening among columns and core shear walls escalate with increasing building height. Differential axial shortening of gravity loaded elements in geometrically complex and irregular buildings result in permanent distortion and deflection of the structural frame which have a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing numerical methods commonly used in design to quantify axial shortening are mainly based on elastic analytical techniques and therefore unable to capture the complexity of non-linear time dependent effect. Ambient measurements of axial shortening using vibrating wire, external mechanical strain, and electronic strain gauges are methods that are available to verify pre-estimated values from the design stage. Installing these gauges permanently embedded in or on the surface of concrete components for continuous measurements during and after construction with adequate protection is uneconomical, inconvenient and unreliable. Therefore such methods are rarely if ever used in actual practice of building construction. This research project has developed a rigorous numerical procedure that encompasses linear and non-linear time dependent phenomena for prediction of axial shortening of reinforced concrete structural components at design stage. This procedure takes into consideration (i) construction sequence, (ii) time varying values of Young's Modulus of reinforced concrete and (iii) creep and shrinkage models that account for variability resulting from environmental effects. The capabilities of the procedure are illustrated through examples. In order to update previous predictions of axial shortening during the construction and service stages of the building, this research has also developed a vibration based procedure using ambient measurements. This procedure takes into consideration the changes in vibration characteristic of structure during and after construction. The application of this procedure is illustrated through numerical examples which also highlight the features. The vibration based procedure can also be used as a tool to assess structural health/performance of key structural components in the building during construction and service life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing stock of aging office buildings will see a significant growth in retrofitting projects in Australian capital cities. Stakeholders of refitting works will also need to take on the sustainability challenge and realize tangible outcomes through project delivery. Traditionally, decision making for aged buildings, when facing the alternatives, is typically economically driven and on ad hoc basis. This leads to the tendency to either delay refitting for as long as possible thus causing building conditions to deteriorate, or simply demolish and rebuild with unjust financial burden. The technologies involved are often limited to typical strip-clean and repartition with dry walls and office cubicles. Changing business operational patterns, the efficiency of office space, and the demand on improved workplace environment, will need more innovative and intelligent approaches to refurbishing office buildings. For example, such projects may need to respond to political, social, environmental and financial implications. There is a need for the total consideration of buildings structural assessment, modeling of operating and maintenance costs, new architectural and engineering designs that maximise the utility of the existing structure and resulting productivity improvement, specific construction management procedures including procurement methods, work flow and scheduling and occupational health and safety. Recycling potential and conformance to codes may be other major issues. This paper introduces examples of Australian research projects which provided a more holistic approach to the decision making of refurbishing office space, using appropriate building technologies and products, assessment of residual service life, floor space optimisation and project procurement in order to bring about sustainable outcomes. The paper also discusses a specific case study on critical factors that influence key building components for these projects and issues for integrated decision support when dealing with the refurbishment, and indeed the “re-life”, of office buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demands of taller structures are becoming imperative almost everywhere in the world in addition to the challenges of material and labor cost, project time line etc. This paper conducted a study keeping in view the challenging nature of high-rise construction with no generic rules for deflection minimizations and frequency control. The effects of cyclonic wind and provision of outriggers on 28-storey, 42-storey and 57-storey are examined in this paper and certain conclusions are made which would pave way for researchers to conduct further study in this particular area of civil engineering. The results show that plan dimensions have vital impacts on structural heights. Increase of height while keeping the plan dimensions same, leads to the reduction in the lateral rigidity. To achieve required stiffness increase of bracings sizes as well as introduction of additional lateral resisting system such as belt truss and outriggers is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses and summarises a recent systematic study on the implication of global warming on air conditioned office buildings in Australia. Four areas are covered, including analysis of historical weather data, generation of future weather data for the impact study of global warming, projection of building performance under various global warming scenarios, and evaluation of various adaptation strategies under 2070 high global warming conditions. Overall, it is found that depending on the assumed future climate scenarios and the location considered, the increase of total building energy use for the sample Australian office building may range from 0.4 to 15.1%. When the increase of annual average outdoor temperature exceeds 2 °C, the risk of overheating will increase significantly. However, the potential overheating problem could be completely eliminated if internal load density is significantly reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As global warming entails new conditions for the built environment, the thermal behavior of existing air conditioned office buildings, which are typically designed based on current weather data, may also change. Through building computer simulations, this paper evaluates the impact of global warming on the design and performance of air-conditioned office buildings in Australia, including the increased cooling loads imposed by potential global warming and probable indoor temperature increases due to possible undersized air-conditioning system, as well as the possible change in energy use and CO2 emission of Australian office buildings. It is found that the existing office buildings would generally be able to adapt to the increasing warmth of 2030 year Low and High scenarios projections and 2070 year Low scenario projection. However, for the 2070 year High scenario, the study indicates that the existing office buildings, in all capital cities except for Hobart, will suffer from overheating problems. If the energy source is assumed to be the electricity, it is found that in comparison with current weather scenario, the increased energy uses would translate into the increase of CO2 emissions by 0 to 34.6 kg CO2 equivalent/m2, varying with different future weather scenarios and with different locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report discusses findings of a case study into "Green Buildings" undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. The Western Australian Government (WAG) has taken a leadership role for a number of decades in developing more environmentally responsive buildings. In the past decade, considerable initiatives have been introduced to contribute to: (i) greening the stock of government buildings; and (ii) providing leadership in the development of other non-residential buildings developed commercially. This role has been informed by global, national and internal initiatives and research in this area. This case study investigates: (i) the nature of this leadership; and (ii) the role of R&D policy development; and (iii) the dissemination and impact of outcomes in the broader industry. This case study should be read in conjunction with Part 1 of this suite of reports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose With an increasingly ageing population and widespread acceptance of the need for sustainable development in Australia, the demand for green retirement villages is increasing. This paper aims to identify the critical issues to be considered by developers and practitioners when embarking on their first green residential retirement project in Australia. Design/methodology/approach In view of the lack of adequate historical data for quantitative analysis, a case study approach is employed to examine the successful delivery of green retirement villages. Face-to-face interviews and document analysis were conducted for data collection. Findings The findings of the study indicate that one of the major obstacles to the provision of affordable green retirement villages is the higher initial costs involved. However, positive aspects were identified, the most significant of which relate to: the innovative design of site and floor plans; adoption of thermally efficient building materials; orientation of windows; installation of water harvesting and recycling systems, water conservation fittings and appliances; and waste management during the construction stage. With the adoption of these measures, it is believed that sustainable retirement development can be achieved without significant additional capital costs. Practical implications The research findings serve as a guide for developers in decision making throughout the project life-cycle when introducing green features into the provision of affordable retirement accommodation. Originality/value This paper provides insights into the means by which affordable green residential retirement projects for aged people can be successfully completed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green building is building that the focus is to maximize the energy efficiency and resources used. While, retrofitting is the process of renovate or refurnish the existing building. Therefore by retrofit existing buildings that comply with green building requirement, it improves the environmental attributes of the buildings. In Malaysia, existing buildings and its communities contribute over 40% of green house gases to the environment. This paper describes a study that explores the potential to retrofit existing campus buildings that response to sustainable green building standard. A validation survey was carried out and the data collected was analysed using SPSS in order to confirm the significance of retrofitting Universiti Teknologi Malaysia (UTM) buildings toward green building initiative. The results show that all the twenty eight identified green elements recorded average index of higher than 3.5 which means that there is significant needs to retrofit the existing buildings to green buildings. This study concludes that it is urgently need for the campus to response to green building requirements in order to achieve higher energy effeciency and this can be done through effective etrofitting of existing buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such, this study aimed to assess the influence of vehicle emissions and nucleation formation on particle characteristics (particle number size distribution-PNSD and PM 2.5 concentration) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PNSD, particle number (PN) and PM 2.5 concentrations, respectively, for up to three weeks at each building. The results showed that both PNSD and PM 2.5 concentration around building envelopes were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During nucleation events, PN concentration in size range of <30 nm and total PN concentration increased (7-65% and 5-46%, respectively), while PM 2.5 concentration decreased (36-52%) with height. This study has shown an under acknowledged role for nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for studies of both human exposure and particle dynamics. © 2012 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Columns and walls in buildings are subjected to a number of load increments during the construction and service stages. The combination of these load increments and poor quality construction can cause defects in these structural components. In addition, defects can also occur due to accidental or deliberate actions by users of the building during construction and service stages. Such defects should be detected early so that remedial measures can be taken to improve life time serviceability and performance of the building. This paper uses micro and macro model upgrading methods during construction and service stages of a building based on the mass and stiffness changes to develop a comprehensive procedure for locating and detecting defects in columns and walls of buildings. Capabilities of the procedure are illustrated through examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to promote green building practice in Australia, the Green Building Council of Australia (GBCA) launched the Green Star rating tools for various types of buildings built since 2003. Of these, the Green Star-Education rating tool addresses sustainability issues during the design and construction phrases of education facility development. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use & Ecology, Emissions and Innovation. This paper reviews the use of the Green Star system in Australian education facilities construction and the potential challenges associated with Green Star- Education implementation. Score sheets of 34 education projects across Australia that achieved Green Star certification were collected and analysed. The percentage of green star points obtained within each category and sub-category (credits) for each project were analysed to illustrate the achievement of credits. The results show that management-related credits and ecology-related credits are the easiest and most difficult to obtain respectively. The study also indicted that 6 Green Star education projects obtained particularly high percentages in the Innovation category. The investigation of points obtained in each category provides prospective Green Star applicants with insights into credit achievement for future projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daring human nature has already led to the construction of high-rise buildings in naturally challenging geological regions and in worse environments of the world. However; literature review divulges that there is a lag in research of certain generic principles and rules for the prediction of lateral movement in multistorey construction. The present competitive trend orders the best possible used of available construction material and resources. Hence; the mixed used of reinforced concrete with structural steel is gaining prevalence day by day. This paper investigates the effects of Seismic load on composite multistorey building provided with core wall and trusses through FEM modelling. The results showed that increased rigidity corresponds to lower period of vibration and hence higher seismic forces. Since Seismic action is a function of mass and response acceleration, therefore; mass increment generate higher earthquake load and thus cause higher impact base shear and overturning movement. Whereas; wind force depends on building exposed, larger the plan dimension greater is the wind impact. Nonetheless; outriggers trusses noticeably contribute, in improving the serviceability of structure subjected to wind and earthquake forces.