950 resultados para heavy metal pollution
Resumo:
280 p.
Resumo:
The levels of some heavy metals in soil samples and tubers of cocoyam ( Colocasia esculentum ) grown on soil receiving paint wastes (PWS) has been investigated using Atomic Absorption spectrophotometer (Unicam 939/959 model). Similar analyses were carried out for the same plant from a control area. The studies revealed that although the P.W.S contained abnormally high levels of Pb (474.14mgkg-1) and Cu (137.85mgkg-1). The paint waste tuber (PWT) recorded low levels of these metals: Pb (2.13mgkg-1) and Cu (13.85mgkg-1) respectively. Correlation analysis tested at 0.05 level of significance show that no significant correlation existed between the metals levels in the soil and the level in the tuber. In all cases the levels of the metals in the tubers were well below the upper limit documented for unpolluted plant. The results however suggest the ineffectiveness of the use of Colocasia esculentum as a bioindicator for heavy metal pollution in soil.
Resumo:
Zero valent iron nanoparticles (nZVI) represent a promising agent for environmental remediation. Nevertheless, their application presents some limitations regarding their rapid oxidation and aggregation in the media. The aim of this study was to determine the effect that nZVI aging has in heavy metal remediation in water. Contaminants studied were Zn, Cd, Ni, Cu and Cr, which are typical elements found in ground and wastewater. Results show a high contaminant removal capacity by the nZVI in the first 2 h of reaction. Nevertheless, for longer reaction times, some of the metal ions that had already been adsorbed in the nZVI were delivered to the water. Cd and Ni show the maximum delivery percentages (65 and 27% respectively after 21 days of contact time). The starting delivery time was shortened when applying lower nZVI amounts. No re-dissolution of Cr was observed in any circumstance because it was the only element incorporated into the nanoparticles core, as TEM images showed. Contaminant release from nZVI is probably due to nanoparticles oxidation caused by aging, which produced a pH decrease and nZVI surface crystallization.
Resumo:
Superficial bottom samples were collected near diffusers of domestic sewage submarine outfalls at Araca and Saco da Capela, Sao Sebastiao Channel, Brazil. The goal of this study was to investigate the distribution and composition of live benthic foraminifera assemblages and integrate the results obtained with geochemical analyses to assess human-induced changes. According to the results obtained no environmental stress was observed near the Saco da Capela submarine outfall diffusers. The foraminifera assemblage is characterised by species typical of highly hydrodynamic environments, with well-oxygenated bottom waters and low nutrient contents. In contrast, near Araca submarine outfall, organic enrichment was denoted by high phosphorus, sulphur and, to a lesser extent, total organic carbon content. Harmful influences on foraminifera could be identified by low richness and specific diversity, as well as the predominance of detritivore feeder species, which are associated with higher organic matter flux and low oxygen in the interstitial pore water. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A total of over 200 different samples of bark and wood of Silver birch, Norway spruce and Scots pine were analysed. Samples were taken from several areas in western Finland, some with known sources of atmospheric heavy metal emission (Harjavalta, Ykspihlaja). Also analytical data for pine needles from some sites are reported. The chemical analyses were performed by thick-target particle-induced X-ray emission (PIXE) spectrometry after preconcentration by dry ashing of samples at 550oC. The following elements were quantified in most of the samples: P, S, K, Ca, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Cd, Ba and Pb. The ash percentage and the chemical composition of ashes of different wood materials were also obtained, as dry ashing was used in the analytical procedure. The variations in elemental concentrations in wood and bark of an individual tree, expressed as RSDs, were mostly in the range 10 – 20 %. For several trees of the same species sampled from small areas (< 1 ha), the variations in elemental concentrations were surprisingly high (RSDs 20 – 50 %). In the vicinity of metal plants, effects of strong atmospheric heavy metal pollution (pollution factor above 100) were observed in pine bark. The increase of heavy metal content in wood samples from the same sites was quite small. Elemental concentrations in ashes of bark and wood, from areas with no local source of atmospheric pollution, were relatively uniform. Based on this observation an alternative way of demonstrating atmospheric pollution of tree bark is discussed.
Resumo:
In nature, variation for example in herbivory, wind exposure, moisture and pollution impact often creates variation in physiological stress and plant productivity. This variation is seldom clear-cut, but rather results in clines of decreasing growth and productivity towards the high-stress end. These clines of unidirectionally changing stress are generally known as ‘stress gradients’. Through its effect on plant performance, stress has the capacity to fundamentally alter the ecological relationships between individuals, and through variation in survival and reproduction it also causes evolutionary change, i.e. local adaptations to stress and eventually speciation. In certain conditions local adaptations to environmental stress have been documented in a matter of just a few generations. In plant-plant interactions, intensities of both negative interactions (competition) and positive ones (facilitation) are expected to vary along stress gradients. The stress-gradient hypothesis (SGH) suggests that net facilitation will be strongest in conditions of high biotic and abiotic stress, while a more recent ‘humpback’ model predicts strongest net facilitation at intermediate levels of stress. Plant interactions on stress gradients, however, are affected by a multitude of confounding factors, making studies of facilitation-related theories challenging. Among these factors are plant ontogeny, spatial scale, and local adaptation to stress. The last of these has very rarely been included in facilitation studies, despite the potential co-occurrence of local adaptations and changes in net facilitation in stress gradients. Current theory would predict both competitive effects and facilitative responses to be weakest in populations locally adapted to withstand high abiotic stress. This thesis is based on six experiments, conducted both in greenhouses and in the field in Russia, Norway and Finland, with mountain birch (Betula pubescens subsp. czerepanovii) as the model species. The aims were to study potential local adaptations in multiple stress gradients (both natural and anthropogenic), changes in plant-plant interactions under conditions of varying stress (as predicted by SGH), potential mechanisms behind intraspecific facilitation, and factors confounding plant-plant facilitation, such as spatiotemporal, ontogenetic, and genetic differences. I found rapid evolutionary adaptations (occurring within a time-span of 60 to 70 years) towards heavy-metal resistance around two copper-nickel smelters, a phenomenon that has resulted in a trade-off of decreased performance in pristine conditions. Heavy-metal-adapted individuals had lowered nickel uptake, indicating a possible mechanism behind the detected resistance. Seedlings adapted to heavy-metal toxicity were not co-resistant to others forms of abiotic stress, but showed co-resistance to biotic stress by being consumed to a lesser extent by insect herbivores. Conversely, populations from conditions of high natural stress (wind, drought etc.) showed no local adaptations, despite much longer evolutionary time scales. Due to decreasing emissions, I was unable to test SGH in the pollution gradients. In natural stress gradients, however, plant performance was in accordance with SGH, with the strongest host-seedling facilitation found at the high-stress sites in two different stress gradients. Factors confounding this pattern included (1) plant size / ontogenetic status, with seedling-seedling interactions being competition dominated and host-seedling interactions potentially switching towards competition with seedling growth, and (2) spatial distance, with competition dominating at very short planting distances, and facilitation being strongest at a distance of circa ¼ benefactor height. I found no evidence for changes in facilitation with respect to the evolutionary histories of plant populations. Despite the support for SGH, it may be that the ‘humpback’ model is more relevant when the main stressor is resource-related, while what I studied were the effects of ‘non-resource’ stressors (i.e. heavy-metal pollution and wind). The results have potential practical applications: the utilisation of locally adapted seedlings and plant facilitation may increase the success of future restoration efforts in industrial barrens as well as in other wind-exposed sites. The findings also have implications with regard to the effects of global change in subarctic environments: the documented potential by mountain birch for rapid evolutionary change, together with the general lack of evolutionary ‘dead ends’, due to not (over)specialising to current natural conditions, increase the chances of this crucial forest-forming tree persisting even under the anticipated climate change.
Resumo:
This study aims to evaluate the bioaccumulation of macronutrients and heavy metals in the golden mussel according to its collection site and seasonality in the aquaculture area of the reservoir from April/2009 to March/2010. There is no difference (p > 0.05) in the concentration of metals with respect to the point of collection. The concentrations of Cu, Fe, Mn, Zn, Cd and Pb were higher (p < 0.05) in spring and summer than in fall and winter. Values of the heavy-metal pollution index (MPI) for collection point and seasonality indicate environmental contamination in the aquaculture area.
Resumo:
Plants respond to environmental adversities, becoming an indicator for assessing the environment quality. In this aspect, chlorophyll contents as well, carotenoids are used as a reliable indicator to associate environmental quality and pollution, mainly regarding the toxicity of heavy metals in higher plants. So, we aimed to evaluate the content of chlorophyll a, b, and total chlorophylls and carotenoids in plants vetiver [Vetiveria zizanioides (L.) Nash], maize (Zea mays L.) cv. AG 1051, sunflower (Helianthus annuus L.) cv. BRS 122/V-2000, and castor beans (Ricinus communis L. ) cv . Northeastern BRS grown in contaminated soil with lead, with and without correction of soil pH, so they were used as indicators of metal stress by the soil. From the biochemical point of view, the correction of soil pH values caused chlorophyll a, b and total statistically higher for vetiver species and castor beans in the analyzed periods, except for the analysis performed 60 days after transplanting where only the species vetiver benefited from the correction of soil pH on the content of chlorophyll b and total. On the other hand plants without correction of soil pH showed a decrease of all chlorophyll levels. In addition, the largest increase in the synthesis of carotenoids, indicated that under stress the plants have developed alternative routes of dissipation of energy in order to avoid problems of photo-inhibition and photo-oxidation.
Resumo:
Maapallon väestön kasvaessa ja tarpeen makealle vedelle, ruualle ja viljelymaalle noustessa on tärkeää alkaa kiinnittää entistä tarkemmin huomiota vesistöjen ja maaperän saastumiseen myrkyllisillä raskasmetalleilla. Erityisesti elohopea ja arseeni, jotka jo nyt vaikuttavat heikentävästi miljoonien ihmisten elämään eri puolilla maapalloa, on syytä ottaa huolelliseen tarkkailuun. Raskasmetallien päästölähteet voidaan jakaa kahteen luokkaan, luonnollisiin ja ihmisperäisiin. Ihmisperäisiin päästölähteisiin voidaan vaikuttaa muun muassa teollisuutta ja liikennettä koskevalla lainsäädännöllä. Luonnollisiin päästölähteisiin vaikuttaminen on huomattavasti haastavampaa, mutta niiden haittaa ihmisille on mahdollista pienentää muun muassa parempien vedenpuhdistustekniikoiden avulla. Tämän työn kirjallisuusosassa tullaan esittelemään erityyppisiä luonnossa esiintyviä arseenin ja elohopean yhdisteitä, suurimpia arseenin ja elohopean päästölähteitä, sekä näiden raskasmetallien haitallisia terveysvaikutuksia. Kokeellisessa osassa tullaan keskittymään arseenin analysointiin nestemäisistä näytteistä. Näytteinä käytettiin tuntemattomilta kaatopaikoilta otettuja suotovesinäytteitä, sekä Pien-Saimaan pintavesinäytteitä. Analyyseihin on käytetty ICP-AES laitteistoa sekä kapillaarielektroforeesia.
Resumo:
The present study focuses on the biochemical aspects of six islands belonging to Lakshadweep Archipelago – namely Kavaratti, Kadamath, Kiltan, Androth, Agathy and Minicoy. Lakshadweep, which is an area biologically significant due to isolation from the major coastline, remains as one of the least studied areas in Indian Ocean. The work, processed out the distributional pattern of trace metals among the biotic (corols, sea weeds and sea grass) and abiotic component (sediments) of ecosystem. An effort is made to picturise the spatial distribution pattern of different forms of nitrogen and phosphorus in the various sedimentary environments of the study area. Studies on the biogeochemical and nutrient aspects of the concerned study area scanty. In Lakshadweep, the local life is very dependent on reefs and its resources. The important stress which produce a threatening effort on the existence for coral reefs are anthropogenic-namely-organic and inorganic pollution from sewage, agricultural and industrial waters, sediment damage from excessive land cleaning, and over exploitation particularly through destructive fishing methods. In addition these one other more localized or less service anthropogenic stress: pollution by oil and other hydrocarbons, complex organic molecular and heavy metal pollution, and destructive engineering practices.
Resumo:
The present study is an attempt to address issues related to sediment properties like texture, mineralogy and geochemistry as well as water quality of two important rivers of central Kerala-the Periyar and the Chalakudy rivers. The main objectives of the study are to investigate the textural and mineralogical characteristics as well as transportation and depositional mechanisms of the sediments of Periyar and Chalakudy rivers, to find out the geochemical variability of organic carbon, phosphorus and certain major (Na,K,Ca and Mg) and minor/trace(Mn,Pb,Ni,Cr, and Zn) elements in the bulk sediments and mud fraction of these rivers, to evaluate the status of heavy metal pollution registered in the sediments of these rivers, to assess the physico-chemical characteristics and water quality of Periyar and Chalakudy rivers and to estimate the dissolved nutrient flux through the Periyar and Chalakudy rivers into the receiving coastal waters. The granulometric characteristics as well as statistical parameters of the sediments of Periyar and Chalakudy rivers depend on the flow pattern controlled by the gradient of the terrain. Compared to Periyar, fluctuations in the dispersal of particles are more in Chalakudy river. In Periyar river, the P and Fe in bulk sediments show a positive correlation with C-org, while in Chalakudy river, both the elements are related to THM concentration. In general, C-org, Fe and P Shows an increasing trend downstream. In Periyar river, the P and Fe in bulk sediments show a positive correlation with C-org, while in Chalakudy river, both the elements are related to THM concentration. Among these two rivers, the pollution of water is several fold higher in Periyar river due to influx due to influx of considerable quantity of liquid and solid wastes of industrial/domestic/urban origin. Nutrient analysis reveals 2-3 times increase in N and P during monsoon season whereas SiO2-Si shows a decreasing trend.
Resumo:
In India industrial pollution has become a subject of increasing concern.Incidents of industrial pollution have been reported from many parts of the country. Cochin, the collection site of the present study, being the industrial capital of Kerela is also a harbour, is vulnerable to pollution by trace metal contaminants. In the recent times, pollutants of greatest concern in the aquatic environment are those which are persistent such as toxic heavy metals and the chlorinated hydrocarbons which include insecticides and pesticides.The animals collected from the clam bed situated on the northern side af Cochin bermouth are subject to wide fluctuations in salinity both seasonal and tidal. also; salinity is considered as an important parameter influencing the.-physiological functioning of an organism. Hence, the salinity tolerance of the animal is worked out. Considering the potential vulnerability of Cochin backwaters to heavy metal pollution, the impact of heavy metal copper (II) on the bivalve Sunetta sripta was conceived. Static bioassays were conducted for the determination of the sublethal concentrations of the metal as a preliminary step towards the toxicity studies. Oxygen consumption and filtration rate which are considered as reliable sublethal toxicity indices were employed for investigating the toxic effects of the metal. Bioaccumulation, a physiological phenomenon which can be of importance from the public health point of view, and also in the assessment of environmental quality is also dealt with.
Resumo:
Mangroves are considered to play a significant role in global carbon cycling. Themangrove forests would fix CO2 by photosynthesis into mangrove lumber and thus decrease the possibility of a catastrophic series of events - global warming by atmospheric CO2, melting of the polar ice caps, and inundation of the great coastal cities of the world. The leaf litter and roots are the main contributors to mangrove sediments, though algal production and allochthonous detritus can also be trapped (Kristensen et al, 2008) by mangroves due to their high organic matter content and reducing nature are excellent metal retainers. Environmental pollution due to metals is of major concern. This is due to the basic fact that metals are not biodegradable or perishable the way most organic pollutants are. While most organic toxicants can be destroyed by combustion and converted into compounds such as C0, C02, SOX, NOX, metals can't be destroyed. At the most the valance and physical form of metals may change. Concentration of metals present naturally in air, water and soil is very low. Metals released into the environment through anthropogenic activities such as burning of fossils fuels, discharge of industrial effluents, mining, dumping of sewage etc leads to the development of higher than tolerable or toxic levels of metals in the environment leading to metal pollution. Of course, a large number of heavy metals such as Fe, Mn, Cu, Ni, Zn, Co, Cr, Mo, and V are essential to plants and animals and deficiency of these metals may lead to diseases, but at higher levels, it would lead to metal toxicity. Almost all industrial processes and urban activities involve release of at least trace quantities of half a dozen metals in different forms. Heavy metal pollution in the environment can remain dormant for a long time and surface with a vengeance. Once an area gets toxified with metals, it is almost impossible to detoxify it. The symptoms of metal toxicity are often quite similar to the symptoms of other common diseases such as respiratory problems, digestive disorders, skin diseases, hypertension, diabetes, jaundice etc making it all the more difficult to diagnose metal poisoning. For example the Minamata disease caused by mercury pollution in addition to affecting the nervous system can disturb liver function and cause diabetes and hypertension. The damage caused by heavy metals does not end up with the affected person. The harmful effects can be transferred to the person's progenies. Ironically heavy metal pollution is a direct offshoot of our increasing ability to mass produce metals and use them in all spheres of existence. Along with conventional physico- chemical methods, biosystem approachment is also being constantly used for combating metal pollution
Resumo:
Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land use change, land management, and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges, and highlight actions and policies to minimise adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.