947 resultados para harmonic suppression
Resumo:
OBJECTIVE: To identify the clinical determinants of occurrence of postictal generalized EEG suppression (PGES) after generalized convulsive seizures (GCS). METHODS: We reviewed the video-EEG recordings of 417 patients included in the REPO2MSE study, a multicenter prospective cohort study of patients with drug-resistant focal epilepsy. According to ictal semiology, we classified GCS into 3 types: tonic-clonic GCS with bilateral and symmetric tonic arm extension (type 1), clonic GCS without tonic arm extension or flexion (type 2), and GCS with unilateral or asymmetric tonic arm extension or flexion (type 3). Association between PGES and person-specific or seizure-specific variables was analyzed after correction for individual effects and the varying number of seizures. RESULTS: A total of 99 GCS in 69 patients were included. Occurrence of PGES was independently associated with GCS type (p < 0.001) and lack of early administration of oxygen (p < 0.001). Odds ratio (OR) for GCS type 1 in comparison with GCS type 2 was 66.0 (95% confidence interval [CI 5.4-801.6]). In GCS type 1, risk of PGES was significantly increased when the seizure occurred during sleep (OR 5.0, 95% CI 1.2-20.9) and when oxygen was not administered early (OR 13.4, 95% CI 3.2-55.9). CONCLUSION: The risk of PGES dramatically varied as a function of GCS semiologic characteristics. Whatever the type of GCS, occurrence of PGES was prevented by early administration of oxygen.
Resumo:
BACKGROUND AND PURPOSE: Compensation for respiratory motion is needed while administering radiotherapy (RT) to tumors that are moving with respiration to reduce the amount of irradiated normal tissues and potentially decrease radiation-induced collateral damages. The purpose of this study was to test a new ventilation system designed to induce apnea-like suppression of respiratory motion and allow long enough breath hold durations to deliver complex RT. MATERIAL AND METHODS: The High Frequency Percussive Ventilation system was initially tested in a series of 10 volunteers and found to be well tolerated, allowing a median breath hold duration of 11.6min (range 3.9-16.5min). An evaluation of this system was subsequently performed in 4 patients eligible for adjuvant breast 3D conformal RT, for lung stereotactic body RT (SBRT), lung volumetric modulated arc therapy (VMAT), and VMAT for palliative pleural metastases. RESULTS: When compared to free breathing (FB) and maximal inspiration (MI) gating, this Percussion Assisted RT (PART) offered favorable dose distribution profiles in 3 out of the 4 patients tested. PART was applied in these 3 patients with good tolerance, without breaks during the "beam on time period" throughout the overall courses of RT. The mean duration of the apnea-like breath hold that was necessary for delivering all the RT fractions was 7.61min (SD=2.3). CONCLUSIONS: This first clinical implementation of PART was found to be feasible, tolerable and offers new opportunities in the field of RT for suppressing respiratory motion.
Resumo:
We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.
Resumo:
Shot-noise suppression is investigated in nondegenerate diffusive conductors by means of an ensemble Monte Carlo simulator. The universal 1/3 suppression value is obtained when transport occurs under elastic collision regime provided the following conditions are satisfied: (i) The applied voltage is much larger than the thermal value; (ii) the length of the device is much greater than both the elastic mean free path and the Debye length. By fully suppressing carrier-number fluctuations, long-range Coulomb interaction is essential to obtain the 1/3 value in the low-frequency limit.
Resumo:
We have analyzed the shot noise of electron emission under strong applied electric fields within the Landauer-Bttiker scheme. In contrast to the previous studies of vacuum-tube emitters, we show that in new generation electron emitters, scaled down to the nanometer dimensions, shot noise much smaller than the Schottky noise is observable. Carbon nanotube field emitters are among possible candidates to observe the effect of shot-noise suppression caused by quantum partitioning.
Resumo:
The condensation rate has to be high in the safety pressure suppression pool systems of Boiling Water Reactors (BWR) in order to fulfill their safety function. The phenomena due to such a high direct contact condensation (DCC) rate turn out to be very challenging to be analysed either with experiments or numerical simulations. In this thesis, the suppression pool experiments carried out in the POOLEX facility of Lappeenranta University of Technology were simulated. Two different condensation modes were modelled by using the 2-phase CFD codes NEPTUNE CFD and TransAT. The DCC models applied were the typical ones to be used for separated flows in channels, and their applicability to the rapidly condensing flow in the condensation pool context had not been tested earlier. A low Reynolds number case was the first to be simulated. The POOLEX experiment STB-31 was operated near the conditions between the ’quasi-steady oscillatory interface condensation’ mode and the ’condensation within the blowdown pipe’ mode. The condensation models of Lakehal et al. and Coste & Lavi´eville predicted the condensation rate quite accurately, while the other tested ones overestimated it. It was possible to get the direct phase change solution to settle near to the measured values, but a very high resolution of calculation grid was needed. Secondly, a high Reynolds number case corresponding to the ’chugging’ mode was simulated. The POOLEX experiment STB-28 was chosen, because various standard and highspeed video samples of bubbles were recorded during it. In order to extract numerical information from the video material, a pattern recognition procedure was programmed. The bubble size distributions and the frequencies of chugging were calculated with this procedure. With the statistical data of the bubble sizes and temporal data of the bubble/jet appearance, it was possible to compare the condensation rates between the experiment and the CFD simulations. In the chugging simulations, a spherically curvilinear calculation grid at the blowdown pipe exit improved the convergence and decreased the required cell count. The compressible flow solver with complete steam-tables was beneficial for the numerical success of the simulations. The Hughes-Duffey model and, to some extent, the Coste & Lavi´eville model produced realistic chugging behavior. The initial level of the steam/water interface was an important factor to determine the initiation of the chugging. If the interface was initialized with a water level high enough inside the blowdown pipe, the vigorous penetration of a water plug into the pool created a turbulent wake which invoked the chugging that was self-sustaining. A 3D simulation with a suitable DCC model produced qualitatively very realistic shapes of the chugging bubbles and jets. The comparative FFT analysis of the bubble size data and the pool bottom pressure data gave useful information to distinguish the eigenmodes of chugging, bubbling, and pool structure oscillations.
Resumo:
During a possible loss of coolant accident in BWRs, a large amount of steam will be released from the reactor pressure vessel to the suppression pool. Steam will be condensed into the suppression pool causing dynamic and structural loads to the pool. The formation and break up of bubbles can be measured by visual observation using a suitable pattern recognition algorithm. The aim of this study was to improve the preliminary pattern recognition algorithm, developed by Vesa Tanskanen in his doctoral dissertation, by using MATLAB. Video material from the PPOOLEX test facility, recorded during thermal stratification and mixing experiments, was used as a reference in the development of the algorithm. The developed algorithm consists of two parts: the pattern recognition of the bubbles and the analysis of recognized bubble images. The bubble recognition works well, but some errors will appear due to the complex structure of the pool. The results of the image analysis were reasonable. The volume and the surface area of the bubbles were not evaluated. Chugging frequencies calculated by using FFT fitted well into the results of oscillation frequencies measured in the experiments. The pattern recognition algorithm works in the conditions it is designed for. If the measurement configuration will be changed, some modifications have to be done. Numerous improvements are proposed for the future 3D equipment.
Resumo:
Field trial was conducted with the aim of utilizing allelopathic crop residues to reduce the use of synthetic herbicides in broad bean (Vicia faba) fields. Sunflower residue at 600 and 1,400 g m-2 and Treflan (trifluralin) at 50, 75 and 100% of recommended dose were incorporated into the soil alone or in combination with each other. Untreated plots were maintained as a control. Herbicide application in plots amended with sunflower residue had the least total weed count and biomass, which was even better than herbicide used alone. Integration of recommended dose of Treflan with sunflower residue at 1,400 g m-² produced maximum (987.5 g m-2) aboveground biomass of broad bean, which was 74 and 36% higher than control and recommended herbicide dose applied alone, respectively. Combination of herbicide and sunflower residue appeared to better enhance pod number and yield per unit area than herbicide alone. Application of 50% dose of Treflan in plots amended with sunflower residue resulted in similar yield advantage as was noticed with 100% herbicide dose. Chromatographic analysis of residue-infested field soil indicated the presence of several phytotoxic compounds of phenolic nature. Periodic data revealed that maximum suppression in weed density and dry weight synchronized with peak values of phytotoxins observed 4 weeks after incorporation of sunflower residues. Integration of sunflower residues with lower herbicide rates can produce effective weed suppression without compromising yield as a feasible and environmentally sound approach in broad bean fields.
Resumo:
Herbicidal potential of different plant aqueous extracts was evaluated against early seedling growth of rice weeds in pot studies. Plant aqueous extracts of sorghum (Sorghum bicolor), sunflower (Helianthus annuus), brassica (Brassica compestris), mulberry (Morris alba), eucalyptus (Eucalyptus camaldunensis), and winter cherry (Withania somnifera) at a spray volume of 18 L ha-1 each at the 2-4 leaf stage of rice weeds viz horse purslane (Trianthema portulacastrum) [broad-leaf], jungle rice (Echinochloa colona), and E. crus-galli (barnyard grass) [grasses] and purple nut sedge (Cyperus rotundus) and rice flat sedge (C. iria) [sedges]. The results showed significant interactive effects between plant aqueous extracts and the tested weed species for seedling growth attributes depicting that allelopathic inhibition was species-specific. Shoot and root length, lateral plant spread, biomass accumulation, and leaf chlorophyll contents in test species were all reduced by different extracts. The study suggested the suppressive potential of allelopathic plant aqueous extracts against rice weeds, and offered promise for their usefulness as a tool for weed management under field conditions.