236 resultados para hCG
Resumo:
A series of experiments with Holstein heifers was conducted to develop the capability of inducing accessory corpus luteum (CL) with a GnRH agonist (Buserelin, 8 mu g; GnRHa) or hCG; (3,000 IU) to increase plasma progesterone concentrations (Exp. 1, 2, and 3) and to test whether induction of accessory CL with hCG will increase conception rates in heifers (Exp. 4) and lactating cows (Exp. 5). In Exp. 1, heifers were treated on d 5 after estrus with GnRHa (n = 8) or saline (n = 7); heifers in Exp. 2 received hCG (n = 5) or saline (n = 4) on d 5. Experiment 3 allowed a contemporary evaluation of heifers treated on d 5 with GnRHa (n = 6), hCG (n = 6), saline (n = 6), or GnRHa at d 5 and hCG at the time of the induced ovulation (n = 5). The GnRHa and hCG were equally effective in inducing an accessory CL (93% induction rate), but the subsequent increase in progesterone concentrations was greater in hCG-treated heifers. A greater half life of hCG may provide longer LH-like stimulation of the first-wave follicle and subsequent developing accessory CL or a greater luteotropic effect on the original CL. Induction of an accessory CL with hCG on d 5 or 6 after insemination did not increase pregnancy rates in fertile heifers (Exp. 4: hCG = 64.8% vs control = 62.9%; n = 243) or lactating dairy cows during summer heat stress (Exp. 5: hCG = 24.2% vs control = 23.5%; n = 201).
Resumo:
The objective was to compare pharmacological strategies aiming to inhibit prostaglandin F2 alpha (PGF(2 alpha)) synthesis (flunixin meglumine; FM), stimulate growth of the conceptus (recombinant bovine somatotropin; bST) and progesterone (P(4)) synthesis (human chorionic gonadotropin; hCG), as well as their combinations, regarding their ability to improve pregnancy rates in beef cattle. Lactating Nelore cows (N = 975), 35 to 70 days postpartum, were synchronized and inseminated by timed artificial insemination (TAT) on Day 0. on Day 7, cattle were allocated into eight groups and received one of the following treatments: saline (S) on Days 7 and 16 (Group Control); S on Day 7 and FM on Day 16 (Group FM); bST on Day 7 and S on Day 16 (Group bST); bST on Day 7 and FM on Day 16 (Group bST + FM); hCG on Day 7 and S on Day 16 (Group hCG); hCG on Day 7 and FM on Day 16 (Group hCG + FM); bST and hCG on Day 7 and S on Day 16 (Group bST + hCG), or bST and hCG on Day 7 and FM on Day 16 (Group bST + hCG + FM). The aforementioned treatments were administered at the following doses: 2.2 mg/kg FM (Banamine (R); Intervet Schering-Plough, Cotia, SP, Brazil), 500 mg bST (Boostin (R); Intervet Schering-Plough), and 2500 IU hCG (Chorulon (R); Intervet Schering-Plough). Pregnancy diagnosis was performed 40 days after TAI by transrectal ultrasonography. Pregnancy rates were not significantly different among treatments. However, there was a main effect of hCG treatment to increase pregnancy rates (63.0 vs. 55.4%; P = 0.001). Concentrations of P(4) did not differ significantly among groups on Day 7 or on Day 16. However, consistent with the higher pregnancy rates, hCG increased P(4) concentrations on Day 16 (10.6 vs. 9.6 ng/mL, respectively; P = 0.05). We concluded that hCG treatment 7 days after TAI improved pregnancy rates of lactating Nelore cows, possibly via a mechanism leading to induction of higher P(4) concentrations, or by reducing the luteolytic stimulus during maternal recognition of pregnancy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation. In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation. Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares. In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3). In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.
Resumo:
The purpose of this review was to assess the efficacy of recombinant LH (r-LH) supplementation for controlled ovarian stimulation in recombinant FSH (r-FSH) and GnRH-agonist (GnRH-a) protocol for IVF/ICSI cycles. Search strategies included on-line surveys of databases from 1990 to 2006. Four trials fulfilled the inclusion criteria (Lisi et al. 2002, Humaidan et al. 2004, Marrs et al. 2004, Tarlatzis et al. 2006). When the review was carried out advantages were observed for the r-LH supplementation protocol with respect to a fewer days of stimulation, a fewer total amount of r-FSH administered and a higher serum estradiol levels on the day of hCG administration. However, these differences were not observed in number of oocyte retrieved, number of mature oocytes, clinical pregnancy per oocyte retrieval, implantation and miscarriage rates. Nevertheless, more randomized controlled trials are necessary before evidence-based recommendations regarding exogenous r-LH supplementation in ovarian stimulation protocols with r-FSH and GnRH-a for assisted reproduction treatment can be provided.
Resumo:
The purpose of this investigation was to verify the efficacy of recombinant LH supplementation for controlled ovarian stimulation in GnRH-antagonist protocol for assisted reproductive technologies cycles. Search strategies included on-line surveys of databases from 1990 to 2006. In this review and meta-analysis, the observed advantages for the LH supplementation protocol were a higher serum estradiol levels on the day of hCG administration and a higher number of mature oocytes. However, there were no differences observed in the total amount of r-FSH administered, days of stimulation, number of oocyte retrieved, the clinical pregnancy rate per oocyte retrieval, the implantation rate and miscarriage rate. This result demonstrates that the association of r-LH with r-FSH may prevent any decrease in estradiol after antagonist administration and a significant higher number of mature oocytes was obtained. Nevertheless, additional randomized controlled trials are needed confirm these observations.
Resumo:
The efficacy of the first ovulation of the breeding season was determined through the response of first pre-ovulatory follicle of the breeding season to hCG, embryo recovery rate, viability of recovered embryos, serum concentrations of progesterone, and response of first CL to PGF 2α. Thirteenth mares that were in vernal transition were accompanied until the first pre-ovulatory follicle was detected. At this moment, the ovulation was induced with 2,500 IU hCG (IV) and the mares were inseminated every other day until ovulation. Seven days after the ovulation, embryo recovery was performed and the progesterone concentration was determined. After detection of the first pre-ovulatory follicle of breeding season with ≥ 25mm, it took 14.92 ± 10.80 days for the follicle to reach the preovulatory size and 18.00 ± 11.08 days to ovulation. After administration of hCG, 11/13 mares ovulated in 48 hours. These follicles growth 2.19 ± 0.86 mm/day on average. Nine of 13 mares (69.2%) produced embryos and all were considered viable after morfological evaluation and fluorescence exams. The CL appeared competent producing 7.39 ± 2.11 ng/ml P 4 on average, and responding to PGF 2α. According to these results the first ovulatory cycle of the year can be utilized to produce viable embryos.
Resumo:
Objective: The aim of our study was to assess the likelihood of IUI success as a function of the previously described predictive factors, including sperm morphology according to the new reference values defined by WHO. Material and Methods: This retrospective study enrolled 300 couples which underwent IUI. Regression analyses were used to correlate maternal age, number of preovulatory follicles on the day of hCG administration, number of inseminated motile sperm, and normal sperm morphology with clinical pregnancy. Results are expressed as odds ratio (OR) with 95% of confidence intervals (CI). Results: Women older than 35 years showed a lower pregnancy rate (6.5% vs 18.2%, p=0.017). Logistic regression models confirmed the lower chance of pregnancy occurrence for older women (OR: 0.39; CI: 0.16-0.96; p=0.040). The presence of two or more preovulatory follicles on the day of hCG administration resulted in higher pregnancy rate when compared to cases in which only one preovulatory follicle was present (18.6% vs 8.2%, p=0.011). The regression model showed a more than two fold increase on probability of pregnancy when two or more preovulatory follicles were detected (OR: 2.58; CI: 1.22-5.46, p=0.013). The number of inseminated motile sperm positively influenced pregnancy occurrence (OR: 1.47; CI: 0.88-3.14, p=0.027). Similar pregnancy rates were observed when semen samples were classified as having normal or abnormal morphology (10.6% vs 10.2%, p=0.936). Conclusion: Our results demonstrate that sperm morphological normalcy, according to the new reference value, has no predictive value on IUI outcomes. © Todos os direitos reservados a SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
The primary objective of this study was to examine the follicular and ovulatory responses following treatment with pFSH in association with ablation-induced or spontaneous follicular wave emergence or follicle deviation during diestrus in crossbred (Mangalarga × Arabian) and Brazilian Warmblood mares with a propensity for spontaneous multiple ovulations; secondary considerations were given to the collection of embryos In Experiment 1, crossbred mares were administered (im) saline (control, n= 7) or pFSH (25 mg) when the largest follicle of the ablation-induced follicular wave reached ≥13 mm (n= 7) or ≥20 mm (n= 7) or, after pre-treatment ovulation (Day 0) on Day 6 (n= 7) In Experiment 2, crossbred mares were administered (im) saline (control, n= 10) or a larger dose of pFSH (50 mg, n= 7) when the largest follicle of the ablation-induced follicular wave reached ≥13 mm In Experiment 3, Brazilian Warmblood mares were administered (im) saline (control, n= 7), pFSH (25 mg, n= 7 or 50 mg, n= 5) or EPE (12.5 mg, n= 7) as a positive control on Day 6 Ultrasonic technology was used to ablate all follicles ≥8 mm and to monitor follicular development and detect ovulation Treatment with pFSH or EPE was done twice daily until the largest follicle reached ≥32 mm; thereafter, hCG (2500 IU) was administered (iv) when the largest follicle reached ≥35 mm Artificial insemination was done 12 h after hCG and embryo collections were done 8 d after post-treatment ovulations In Experiments 1 and 2, treatment of crossbred mares with pFSH post-ablation in association with the expected time of wave emergence or follicle deviation did not (P> 0.05) enhance the follicular or ovulatory responses or collection of embryos compared to controls In Experiment 3, although the enhanced ovulatory response of mares to EPE at the expected time of spontaneous wave emergence was not different (P> 0.05) from controls, it was greater (P< 0.05) than the response to pFSH In conclusion, the novelty of using follicle ablation prior to pFSH treatment at the time of wave emergence or follicle deviation did not enhance the follicular or ovulatory responses or collection of embryos to treatment in crossbred mares In addition, the hypothesis that Brazilian Warmblood mares with a greater propensity for spontaneous multiple ovulations are as responsive to pFSH compared to EPE was not supported Thus, the combined experimental results of the present study continue to support the general consensus that pFSH is relatively ineffective for follicular superstimulation/superovulation in mares © 2012 Elsevier B.V.
Resumo:
Hydrometra is considered a very important pathological condition, because it represents one of the main causes of temporary infertility in dairy goats. The objective was (i) to evaluate a protocol for the treatment of hydrometra associated (n=2) or not (n=17) with follicular ovarian cyst in 19 dairy goats and (ii) to assess its reproductive efficiency after treatment. For this purpose, 10. mg of dinoprost (PGF) divided in two equal doses were administered to all animals intravulvosubmucosally on Days 0 and 10. In addition, 500. IU hCG were administered on Day 7. Ultrasound exams were performed in all females from Days 0 to 3, 7 and 10 to 13 of treatment, in order to evaluate uterus drainage after each treatment. Goats were monitored for estrus after both treatments and mated after the second dose of PGF. Blood samples were collected from 11 goats to determine plasma progesterone concentrations before, during and after treatment. Of the 19 goats treated, 16 lost weight after the first dose, probably due to uterine discharge. Complete drainage of uterine fluid was observed in 11/19 (57.9%) and 17/19 (89.5%) after the first and second doses, respectively. Afterwards, we diagnosed 2 more goats with follicular cysts, for a total of 21.1% (4/19) of animals exhibiting hydrometra and ovarian cyst concomitantly. In one doe the diagnosis was on Day 2 and in the other on Day 11. All does showed progesterone concentrations superior to 1. ng/mL at Day 0, with an average of 10.6 ± 1.4. ng/mL. Out of the 10 goats mated, only two became pregnant after treatment, corresponding to 10.5% of the total (2/19). Although prostaglandin was effective to drain the uterine fluid and led to the onset of estrus, it did not improve the pregnancy rate. The use of hCG in female goats was not effective in luteinizing the cysts. It can be concluded that hydrometra alone or associated with ovarian follicular cyst may adversely affect goat reproductive performance. © 2012 Elsevier B.V.
Resumo:
Objective: To compare cost-effectiveness between pituitary down-regulation with a GnRH agonist (GnRHa) short regimen on alternate days and GnRH antagonist (GnRHant) multidose protocol on in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) outcome. Design: Prospective, randomized. Setting: A private center. Patient(s): Patients were randomized into GnRHa (n = 48) and GnRHant (n = 48) groups. Intervention(s): GnRHa stimulation protocol: administration of triptorelin on alternate days starting on the first day of the cycle, recombinant FSH (rFSH), and recombinant hCG (rhCG) microdose. GnRHant protocol: administration of a daily dose of rFSH, cetrorelix, and rhCG microdose. Main Outcome Measure(s): ICSI outcomes and treatment costs. Result(s): A significantly lower number of patients underwent embryo transfer in the GnRHa group. Clinical pregnancy rate was significantly lower and miscarriage rate was significantly higher in the GnRHa group. It was observed a significant lower cost per cycle in the GnRHa group compared with the GnRHant group ($5,327.80 ± 387.30 vs. $5,900.40 ± 472.50). However, mean cost per pregnancy in the GnRHa was higher than in the GnRHant group ($19,671.80 ± 1,430.00 vs. $11,328.70 ± 907.20). Conclusion(s): Although the short controlled ovarian stimulation protocol with GnRHa on alternate days, rFSH, and rhCG microdose may lower the cost of an individual IVF cycle, it requires more cycles to achieve pregnancy. Clinical Trial Registration Number: NCT01468441. © 2013 by American Society for Reproductive Medicine.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Farmacologia) - IBB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Animal - FMVA