913 resultados para grid-based spatial data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data Distribution Management (DDM) is a core part of High Level Architecture standard, as its goal is to optimize the resources used by simulation environments to exchange data. It has to filter and match the set of information generated during a simulation, so that each federate, that is a simulation entity, only receives the information it needs. It is important that this is done quickly and to the best in order to get better performances and avoiding the transmission of irrelevant data, otherwise network resources may saturate quickly. The main topic of this thesis is the implementation of a super partes DDM testbed. It evaluates the goodness of DDM approaches, of all kinds. In fact it supports both region and grid based approaches, and it may support other different methods still unknown too. It uses three factors to rank them: execution time, memory and distance from the optimal solution. A prearranged set of instances is already available, but we also allow the creation of instances with user-provided parameters. This is how this thesis is structured. We start introducing what DDM and HLA are and what do they do in details. Then in the first chapter we describe the state of the art, providing an overview of the most well known resolution approaches and the pseudocode of the most interesting ones. The third chapter describes how the testbed we implemented is structured. In the fourth chapter we expose and compare the results we got from the execution of four approaches we have implemented. The result of the work described in this thesis can be downloaded on sourceforge using the following link: https://sourceforge.net/projects/ddmtestbed/. It is licensed under the GNU General Public License version 3.0 (GPLv3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around South Africa and across the Indian Ocean to the western Pacific in 1906/1907, and (2) ship-based radiosonde data from onboard the MS Schwabenland on a cruise from Europe across the Atlantic to Antarctica and back in 1938/1939. We describe the data and provide estimations of the errors. We compare the data with a recent reanalysis (the Twentieth Century Reanalysis Project, 20CR, Compo et al., 2011) that provides global 3-D data back to the 19th century based on an assimilation of surface pressure data only (plus monthly mean sea-surface temperatures). In cruise (1), the agreement is generally good, but large temperature differences appear during a period with a strong inversion. In cruise (2), after a subset of the data are corrected, close agreement between observations and 20CR is found for geopotential height (GPH) and temperature notwithstanding a likely cold bias of 20CR at the tropopause level. Results are considerably worse for relative humidity, which was reportedly inaccurately measured. Note that comparing 20CR, which has limited skill in the tropical regions, with measurements from ships in remote regions made under sometimes difficult conditions can be considered a worst case assessment. In view of that fact, the anomaly correlations for temperature of 0.3–0.6 in the lower troposphere in cruise (1) and of 0.5–0.7 for tropospheric temperature and GPH in cruise (2) are considered as promising results. Moreover, they are consistent with the error estimations. The results suggest room for further improvement of data products in remote regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rotational nature of shifting cultivation poses several challenges to its detection by remote sensing. Consequently, there is a lack of spatial data on the dynamics of shifting cultivation landscapes on a regional, i.e. sub-national, or national level. We present an approach based on a time series of Landsat and MODIS data and landscape metrics to delineate the dynamics of shifting cultivation landscapes. Our results reveal that shifting cultivation is a land use system still widely and dynamically utilized in northern Laos. While there is an overall reduction in the areas dominated by shifting cultivation, some regions also show an expansion. A review of relevant reports and articles indicates that policies tend to lead to a reduction while market forces can result in both expansion and reduction. For a better understanding of the different factors affecting shifting cultivation landscapes in Laos, further research should focus on spatially explicit analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In land systems, equitably managing trade-offs between planetary boundaries and human development needs represents a grand challenge in sustainability oriented initiatives. Informing such initiatives requires knowledge about the nexus between land use, poverty, and environment. This paper presents results from Lao PDR, where we combined nationwide spatial data on land use types and the environmental state of landscapes with village-level poverty indicators. Our analysis reveals two general but contrasting trends. First, landscapes with paddy or permanent agriculture allow a greater number of people to live in less poverty but come at the price of a decrease in natural vegetation cover. Second, people practising extensive swidden agriculture and living in intact environments are often better off than people in degraded paddy or permanent agriculture. As poverty rates within different landscape types vary more than between landscape types, we cannot stipulate a land use–poverty–environment nexus. However, the distinct spatial patterns or configurations of these rates point to other important factors at play. Drawing on ethnicity as a proximate factor for endogenous development potentials and accessibility as a proximate factor for external influences, we further explore these linkages. Ethnicity is strongly related to poverty in all land use types almost independently of accessibility, implying that social distance outweighs geographic or physical distance. In turn, accessibility, almost a precondition for poverty alleviation, is mainly beneficial to ethnic majority groups and people living in paddy or permanent agriculture. These groups are able to translate improved accessibility into poverty alleviation. Our results show that the concurrence of external influences with local—highly contextual—development potentials is key to shaping outcomes of the land use–poverty–environment nexus. By addressing such leverage points, these findings help guide more effective development interventions. At the same time, they point to the need in land change science to better integrate the understanding of place-based land indicators with process-based drivers of land use change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial data are being increasingly used in a wide range of disciplines, a fact that is clearly reflected in the recent trend to add spatial dimensions to the conventional social sciences. Economics is by no means an exception. On one hand, spatial data are indispensable to many branches of economics such as economic geography, new economic geography, or spatial economics. On the other hand, macroeconomic data are becoming available at more and more micro levels, so that academics and analysts take it for granted that they are available not only for an entire country, but also for more detailed levels (e.g. state, province, and even city). The term ‘spatial economics data’ as used in this report refers to any economic data that has spatial information attached. This spatial information can be the coordinates of a location at best or a less precise place name as is used to describe administrative units. Obviously, the latter cannot be used without a map of corresponding administrative units. Maps are therefore indispensible to the analysis of spatial economic data without absolute coordinates. The aim of this report is to review the availability of spatial economic data that pertains specifically to Laos and academic studies conducted on such data up to the present. In regards to the availability of spatial economic data, efforts have been made to identify not only data that has been made available as geographic information systems (GIS) data, but also those with sufficient place labels attached. The rest of the report is organized as follows. Section 2 reviews the maps available for Laos, both in hard copy and editable electronic formats. Section 3 summarizes the spatial economic data available for Laos at the present time, and Section 4 reviews and categorizes the many economic studies utilizing these spatial data. Section 5 give examples of some of the spatial industrial data collected for this research. Section 6 provides a summary of the findings and gives some indication of the direction of the final report due for completion in fiscal 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A useful strategy for improving disaster risk management is sharing spatial data across different technical organizations using shared information systems. However, the implementation of this type of system requires a large effort, so it is difficult to find fully implemented and sustainable information systems that facilitate sharing multinational spatial data about disasters, especially in developing countries. In this paper, we describe a pioneer system for sharing spatial information that we developed for the Andean Community. This system, called SIAPAD (Andean Information System for Disaster Prevention and Relief), integrates spatial information from 37 technical organizations in the Andean countries (Bolivia, Colombia, Ecuador, and Peru). SIAPAD was based on the concept of a thematic Spatial Data Infrastructure (SDI) and includes a web application, called GEORiesgo, which helps users to find relevant information with a knowledge-based system. In the paper, we describe the design and implementation of SIAPAD together with general conclusions and future directions which we learned as a result of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies for describing different domains. Par-ticular LD development characteristics such as agility and web-based architec-ture necessitate the revision, adaption, and lightening of existing methodologies for ontology development. This thesis proposes a lightweight method for ontol-ogy development in an LD context which will be based in data-driven agile de-velopments, existing resources to be reused, and the evaluation of the obtained products considering both classical ontological engineering principles and LD characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI. The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions.