984 resultados para graded-index fiber lens


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The turning point of the refractive index (RI) sensitivity based on the multimode microfiber (MMMF) in-line Mach–Zehnder interferometer (MZI) is observed. By tracking the resonant wavelength shift of the MZI generated between the HE11 and HE12 modes in the MMMF, the surrounding RI (SRI) could be detected. Theoretical analysis demonstrates that the RI sensitivity will reach ±∞ on either side of the turning point due to the group effective RI difference (퐺) approaching zero. Significantly, the positive sensitivity exists in a very wide fiber diameter range, while the negative sensitivity can be achieved in a narrow diameter range of only 0.3 μm. Meanwhile, the experimental sensitivities and variation trend at different diameters exhibit high consistency with the theoretical results. High RI sensitivity of 10777.8 nm/RIU (RI unit) at the fiber diameter of 4.6 μm and the RI around 1.3334 is realized. The discovery of the sensitivity turning points has great significance on trace detection due to the possibility of ultrahigh RI sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility since it allows complex three dimensional structures to be inscribed and then etched with hydrofluoric acid. Four in-fiber microchannel designs were experimentally investigated using this technique. Device characteristics were evaluated through monitoring the spectral change while inserting index matching oils into each microchannel - a R.I. sensitivity up to 1.55 dB/RIU was achieved. Furthermore, a simple Fabry-Pérot based refractometer with a R.I. sensitivity of 2.75 nm/RIU was also demonstrated. © 2014 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long period gratings (LPGs) were written into a D-shaped optical fibre, which has an elliptical core with a W-shaped refractive index profile. The LPG's attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15nm between the two orthogonal polarisation states. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature, surrounding refractive index, and directional bending. These LPG devices produced blue and red wavelength shifts of the stop-bands due to bending in different directions. The measured spectral sensitivities to curvatures, d?/dR , ranged from -3.56nm m to +6.51nm m. The results obtained with these LPGs suggest that this type of fibre may be useful as a shape/bend sensor. It was also demonstrated that the neighbouring bands could be used to discriminate between temperature and bending and that overlapping orthogonal polarisation attenuation bands can be used to minimise error associated with polarisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple efficient method for stabilizing a harmonically mode-locked fiber ring laser is proposed. In this method, a linear optical filter and a nonlinear Fabry–Pérot filter in which the refractive index is optical intensity dependent are located in the laser cavity. The linear filter is used to select a fixed lasing wavelength, and the Fabry–Pérot filter introduces a negative all-optical feedback mechanism that is able to suppress pulse-to-pulse amplitude fluctuations in the laser cavity. The scheme was experimentally demonstrated using a fiber Bragg grating as the linear filter and a laser diode biased below threshold as the nonlinear Fabry–Pérot, and stable harmonically mode-locked pulses with a supermode noise suppression ratio >55 dB were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-period grating (LPG) sensor is used to detect small variations in the concentration of an organic aromatic compound (xylene) in a paraffin (heptane) solution. A new design procedure is adopted and demonstrated to maximize the sensitivity of LPG (wavelength shift for a change in the surrounding refractive index, (dλ/dn3)) for a given application. The detection method adopted is comparable to the standard technique used in industry (high performance liquid chromatograph and UV spectroscopy) which has a relative accuracy between ∼±0.5% and 5%. The minimum detectable change in volumetric concentration is 0.04% in a binary fluid with the detection system presented. This change of concentration relates to a change in refractive index of Δn ∼ 6 × 10-5. © 2001 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bragg wavelength of a PMMA based fiber grating is determined by the effective core index and the grating pitch, which, in temperature sensing, depend on the thermo-optic and thermal expansion coefficients of PMMA. These two coefficients are a function of surrounding temperature and humidity. Amorphous polymers including PMMA exhibit a certain degree of anisotropic thermal expansion. The anisotropic nature of expansion mainly depends on the polymer processing history. The expansion coefficient is believed to be lower in the direction of the molecular orientation than in the direction perpendicular to the draw direction. Such anisotropic behavior of polymers can be expected in drawn PMMA based optical fiber, and will lead to a reduced thermal expansion coefficient and larger temperature sensitivity than would be the case were the fiber to be isotropic. Extensive work has been carried out to identify these factors. The temperature responses of gratings have been measured at different relative humidity. Gratings fabricated on annealed and non-annealed PMMA optical fibers are used to compare the sensitivity performance as annealing is considered to be able to mitigate the anisotropic effect in PMMA optical fiber. Furthermore an experiment has been designed to eliminate the thermal expansion contribution to the grating wavelength change, leading to increased temperature sensitivity and improved response linearity. © 2014 Copyright SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel. © 2014 Copyright SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a detailed numerical analysis, fabrication method and experimental investigation on 45º tilted fiber gratings (45º-TFGs) and excessively tilted fiber gratings (Ex-TFGs), and their applications in fiber laser and sensing systems. The one of the most significant contributions of the work reported in this thesis is that the 45º-TFGs with high polarization extinction ratio (PER) have been fabricated in single mode telecom and polarization maintaining (PM) fibers with spectral response covering three prominent optic communication and central wavelength ranges at 1060nm, 1310nm and 1550nm. The most achieved PERs for the 45º-TFGs are up to and greater than 35-50dB, which have reached and even exceeded many commercial in-fiber polarizers. It has been proposed that the 45º-TFGs of high PER can be used as ideal in-fiber polarizers for a wide range of fiber systems and applications. In addition, in-depth detailed theoretical models and analysis have been developed and systematic experimental evaluation has been conducted producing results in excellent agreement with theoretical modeling. Another important outcome of the research work is the proposal and demonstration of all fiber Lyot filters (AFLFs) implemented by utilizing two (for a single stage type) and more (for multi-stage) 45º-TFGs in PM fiber cavity structure. The detailed theoretical analysis and modelling of such AFLFs have also been carried out giving design guidance for the practical implementation. The unique function advantages of 45º-TFG based AFLFs have been revealed, showing high finesse multi-wavelength transmission of single polarization and wide range of tuneability. The temperature tuning results of AFLFs have shown that the AFLFs have 60 times higher thermal sensitivity than the normal FBGs, thus permitting thermal tuning rate of ~8nm/10ºC. By using an intra-cavity AFLF, an all fiber soliton mode locking laser with almost total suppression of siliton sidebands, single polarization output and single/multi-wavelength switchable operation has been demonstrated. The final significant contribution is the theoretical analysis and experimental verification on the design, fabrication and sensing application of Ex-TFGs. The Ex-TFG sensitivity model to the surrounding medium refractive index (SRI) has been developed for the first time, and the factors that affect the thermal and SRI sensitivity in relation to the wavelength range, tilt angle, and the size of cladding have been investigated. As a practical SRI sensor, an 81º-TFG UV-inscribed in the fiber with small (40μm) cladding radius has shown an SRI sensitivity up to 1180nm/RIU in the index of 1.345 range. Finally, to ensure single polarization detection in such an SRI sensor, a hybrid configuration by UV-inscribing a 45º-TFG and an 81º-TFG closely on the same piece of fiber has been demonstrated as a more advanced SRI sensing system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To examine the optimum time at which fluorescein patterns of gas permeable lenses (GPs) should be evaluated. METHODS: Aligned, 0.2mm steep and 0.2mm flat GPs were fitted to 17 patients (aged 20.6±1.1 years, 10 male). Fluorescein was applied to their upper temporal bulbar conjunctiva with a moistened fluorescein strip. Digital slit lamp images (CSO, Italy) at 10× magnification of the fluorescein pattern viewed with blue light through a yellow filter were captured every 15s. Fluorescein intensity in central, mid peripheral and edge regions of the superior, inferior, temporal and nasal quadrants of the lens were graded subjectively using a +2 to -2 scale and using ImageJ software on the simultaneously captured images. RESULTS: Subjectively graded and objectively image analysed fluorescein intensity changed with time (p<0.001), lens region (centre, mid-periphery and edge: p<0.05) and there was interaction between lens region with lens fit (p<0.001). For edge band width, there was a significant effect of time (F=118.503, p<0.001) and lens fit (F=5.1249, p=0.012). The expected alignment, flat and steep fitting patterns could be seen from approximately after 30 to 180s subjectively and 15 to 105s in captured images. CONCLUSION: Although the stability of fluorescein intensity can start to decline in as little as 45s post fluorescein instillation, the diagnostic pattern of alignment, steep or flat fit is seen in each meridian by subjective observation from about 30s to 3min indicating this is the most appropriate time window to evaluate GP lenses in clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tilted fiber Bragg grating (TFBG) was integrated as the dispersive element in a high performance biomedical imaging system. The spectrum emitted by the 23 mm long active region of the fiber is projected through custom designed optics consisting of a cylindrical lens for vertical beam collimation and successively by an achromatic doublet onto a linear detector array. High resolution tomograms of biomedical samples were successfully acquired by the frequency domain OCT-system. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 10.2 μm lateral resolution. The miniaturization reduces costs and has the potential to further extend the field of application for OCT-systems in biology, medicine and technology. © 2014 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concatenated single-mode-multimode-single-mode (SMS) structures are demonstrated as functional sensing platforms. The devices are fabricated by periodically inserting micrometric sections of multimode optical fiber (MMF) in a single-mode fiber (SMF). The periodic change of the core diameter produces a single strong resonant transmission notch, tunable in the wavelength range from 1200 to 1600 nm. It was found that the position of the notch changed with temperature and refractive index. The devices introduced here are highly compact (length less than 5 mm), simple to fabricate and robust; hence, they are adequate for diverse sensing applications. © 2013 The Japan Society of Applied Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (~40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10-5. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a bi-metal coated (platinum and gold or silver), localized surface plasmon resonance fiber sensor with an index sensitivity exceeding 11,900 nm/RIU, yielding an index resolution of 2 × 10-5 in the aqueous index regime. This is one of the highest index sensitivities achieved with an optical fiber sensor. The coatings consist of arrays of bi-metal nano-wires (typically 36 nm in radius and 20 μm in length), supported by a silicon dioxide thin film on a thin substrate of germanium, the nano-wires being perpendicular to the longitudinal axis of the D-shaped fiber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A liquid core waveguide as a refractometer is proposed. Microtunnels were created in standard optical fiber using tightly focused femtoscond laser inscription and chemical etching. A 1.2(h)×l25(d) ×500(1) μm micro-slot engraved along a fiber Bragg grating (FBG) was used to construct liquid core waveguide by filling the slot with index matching oils. The device was used to measure refractive index and sensitivity up to 10-6/pm was obtained. © 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functionality of an open graded friction course (OGFC) depends on the high interconnected air voids or pores of the OGFC mixture. The authors' previous study indicated that the pores in the OGFC mixture were easily clogged by rutting deformation. Such a deformation-related clogging can cause a significant rutting-induced permeability loss in the OGFC mixture. The objective of this study was to control and reduce the rutting-induced permeability loss of the OGFC based on mixture design and layer thickness. Eight types of the OGFC mixtures with different air void contents, gradations, and nominal maximum aggregate sizes were fabricated in the laboratory. Wheel-tracking rutting tests were conducted on the OGFC slabs to simulate the deformation-related clogging. Permeability tests after different wheel load applications were performed on the rutted OGFC slabs using a falling head permeameter developed in the authors' previous study. The relationships between permeability loss and rutting depth as well as dynamic stability were developed based on the eight OGFC mixtures' test results. The thickness effects of the single-layer and the two-layer OGFC slabs were also discussed in terms of deformation-related clogging and the rutting-induced permeability loss. Results showed that the permeability coefficient decreases linearly with an increasing rutting depth of the OGFC mixtures. Rutting depth was recommended as a design index to control permeability loss of the OGFC mixture rather than the dynamic stability. Permeability loss due to deformation-related clogging can be effectively reduced by using a thicker single-layer OGFC or two-layer OGFC.