994 resultados para genotype-phenotype correlation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: A recent study investigated the MYLIP region in the Mexican population in order to fine-map the actual susceptibility variants of this locus. The p.N342S polymorphism was identified as the underlying functional variant accounting for one of the previous signals of genome-wide association studies and the N342 allele was associated with higher cholesterol concentrations in Mexican dyslipidemic individuals. To date, there is no further evaluation on this genotype-phenotype association in the literature. In this scenario, and because of a possible pharmacotherapeutic target of dyslipidemia, the main aim of this study was to assess the influence of the MYLIP p.N342S polymorphism on lipid profile in Brazilian individuals. Methods: 1295 subjects of the general population and 1425 consecutive patients submitted to coronary angiography were selected. General characteristics, biochemical tests, blood pressures, pulse wave velocity, and coronary artery disease scores were analyzed. Genotypes for the MYLIP rs9370867 (p.N342S, c.G1025A) polymorphism were detected by high resolution melting analysis. Results: No association of the MYLIP rs9370867 genotypes with lipid profile, hemodynamic data, and coronary angiographic data was found. Analysis stratified by hyperlipidemia, gender, and ethnicity was also performed and the sub-groups presented similar results. In both general population and patient samples, the MYLIP rs9370867 polymorphism was differently distributed according to ethnicity. In the general population, subjects carrying GG genotypes had higher systolic blood pressure (BP), diastolic BP, and mean BP values (129.0 +/- 23.3; 84.9 +/- 14.6; 99.5 +/- 16.8 mmHg) compared with subjects carrying AA genotypes (123.7 +/- 19.5; 81.6 +/- 11.8; 95.6 +/- 13.6 mmHg) (p = 0.01; p = 0.02; p = 0.01, respectively), even after adjustment for covariates. However, in analysis stratified by ethnicity, this finding was not found and there is no evidence that the polymorphism influences BP. Conclusion: Our findings indicate that association studies involving this MYLIP variant can present distinct results according to the studied population. In this moment, further studies are needed to reaffirm if the MYLIP p.N342S polymorphism is functional or not, and to identify other functional markers within this gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Severe factor XIII (FXIII) deficiency is a rare autosomal recessive coagulation disorder affecting one in two million individuals. The aim of the present study was to screen for and analyse F13B gene defects in the German population. A total of 150 patients presenting with suspected FXIII deficiency and one patient with severe (homozygous) FXIII deficiency were screened for mutations in F13A and F13B genes. Twenty-five individuals presented with detectable heterozygous mutations, 12 of them in the F13A gene and 13 of them in the F13B gene. We report on the genotype-phenotype correlations of the individuals showing defects in the F13B gene. Direct sequencing revealed 12 unique mutations including seven missense mutations (Cys5Arg, Ile81Asn, Leu116Phe, Val217Ile, Cys316Phe, Val401Glu, Pro428Ser), two splice site mutations (IVS2-1G>C, IVS3-1G>C), two insertions (c.1155_1158dupACTT, c.1959insT) and one in-frame deletion (c.471-473delATT). Two of the missense mutations (Cys5Arg, Cys316Phe) eliminated disulphide bonds (Cys5-Cys56, Cys316-Cys358). Another three missense mutations, (Leu116Phe, Val401Glu, Pro428Ser) were located proximal to other cysteine disulphide bonds, therefore indicating that the region in and around these disulphide bonds is prone to functionally relevant mutations in the FXIII-B subunit. The present study reports on a fairly common prevalence of F13B gene defects in the German population. The regions in and around the cysteine disulphide bonds in the FXIII-B protein may be regions prone to frequent mutations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (~30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the "Beijing" sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator gene (CFTR). Disease severity in CF varies greatly, and sibling studies strongly indicate that genes other than CFTR modify disease outcome. Syntaxin 1A (STX1A) has been reported as a negative regulator of CFTR and other ion channels. We hypothesized that STX1A variants act as a CF modifier by influencing the remaining function of mutated CFTR. We identified STX1A variants by genomic resequencing patients from the Bernese CF Patient Data Registry and applied linear mixed model analysis to establish genotype-phenotype correlations, revealing STX1A rs4363087 (c.467-38A>G) to significantly influence lung function. The same STX1A risk allele was recognized in the European CF Twin and Sibling Study (P=0.0027), demonstrating that the genotype-phenotype association of STX1A to CF disease severity is robust enough to allow replication in two independent CF populations. rs4363087 is in linkage disequilibrium to the exonic variant rs2228607 (c.204C>T). Considering that neither rs4363087 nor rs2228607 changes the amino-acid sequence of STX1A, we investigated their effects on mRNA level. We show that rs2228607 reinforces aberrant splicing of STX1A mRNA, leading to nonsense-mediated mRNA decay. In conclusion, we demonstrate the clinical relevance of STX1A variants in CF, and evidence the functional relevance of STX1A variant rs2228607 at molecular level. Our findings show that genes interacting with CFTR can modify CF disease progression.European Journal of Human Genetics advance online publication, 10 April 2013; doi:10.1038/ejhg.2013.57.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chronic alcohol consumption is a major cause of liver cirrhosis which, however, develops in only a minority of heavy drinkers. Evidence from twin studies indicates that genetic factors account for at least 50% of individual susceptibility. The contribution of genetic factors to the development of diseases may be investigated either by means of animal experiments, through linkage studies in families of affected patients, or population based case-control studies. With regard to the latter, single nucleotide polymorphisms of genes involved in the degradation of alcohol, antioxidant defense, necroinflammation, and formation and degradation of extracellular matrix are attractive candidates for studying genotype-phenotype associations. However, many associations in early studies were found to be spurious and could not be confirmed in stringently designed investigations. Therefore, future genotype-phenotype studies in alcoholic liver disease should meet certain requirements in order to avoid pure chance observations due to a lack of power, false functional interpretation, and insufficient statistical evaluation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: A severely virilized 46, XX newborn girl was referred to our center for evaluation and treatment of congenital adrenal hyperplasia (CAH) because of highly elevated 17alpha-hydroxyprogesterone levels at newborn screening; biochemical tests confirmed the diagnosis of salt-wasting CAH. Genetic analysis revealed that the girl was compound heterozygote for a previously reported Q318X mutation in exon 8 and a novel insertion of an adenine between nucleotides 962 and 963 in exon 4 of the CYP21A2 gene. This 962_963insA mutation created a frameshift leading to a stop codon at amino acid 161 of the P450c21 protein. AIM AND METHODS: To better understand structure-function relationships of mutant P450c21 proteins, we performed multiple sequence alignments of P450c21 with three mammalian P450s (P450 2C8, 2C9 and 2B4) with known structures as well as with human P450c17. Comparative molecular modeling of human P450c21 was then performed by MODELLER using the X-ray crystal structure of rabbit P450 2B4 as a template. RESULTS: The new three dimensional model of human P450c21 and the sequence alignment were found to be helpful in predicting the role of various amino acids in P450c21, especially those involved in heme binding and interaction with P450 oxidoreductase, the obligate electron donor. CONCLUSION: Our model will help in analyzing the genotype-phenotype relationship of P450c21 mutations which have not been tested for their functional activity in an in vitro assay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS: Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY: P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genotyping platforms such as Affymetrix can be used to assess genotype-phenotype as well as copy number-phenotype associations at millions of markers. While genotyping algorithms are largely concordant when assessed on HapMap samples, tools to assess copy number changes are more variable and often discordant. One explanation for the discordance is that copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. Analysis algorithms that do not adjust for batch effects are prone to spurious measures of association. The R package crlmm implements a multilevel model that adjusts for batch effects and provides allele-specific estimates of copy number. This paper illustrates a workflow for the estimation of allele-specific copy number, develops markerand study-level summaries of batch effects, and demonstrates how the marker-level estimates can be integrated with complimentary Bioconductor software for inferring regions of copy number gain or loss. All analyses are performed in the statistical environment R. A compendium for reproducing the analysis is available from the author’s website (http://www.biostat.jhsph.edu/~rscharpf/crlmmCompendium/index.html).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common life-shortening autosomal recessive disorder in Caucasians, and is associated with at least one mutation on each CF transmembrane conductance regulator (CFTR) allele. Some patients, however, with only one identifiable point mutation carry on the other allele, a large deletion that is not detected by conventional screening methods. The overall frequency of large deletions in patients with CF is estimated to be 1-3%. Using the CFTR Multiplex Ligation dependent Probe Amplification Kit (MRC-Holland, Amsterdam, Netherlands) that allows the exact detection of copy numbers from all 27 exons in the CFTR gene, we screened 50 patients with only one identified mutation for large deletions in the CFTR gene. Each detected deletion was confirmed using our real-time polymerase chain reaction (PCR) assay and deletion-specific PCR reactions using junction fragment primers. We detected large deletions in eight patients (16%). These eight CF alleles belong to four different deletion types (CFTRindel2, CFTRdele14b-17b, CFTRdele17a-17b and CFTRdele 2-9) whereof the last is novel. Comparing detailed clinical data of all these patients with CF and the molecular genetic findings, we were able to elaborate criteria for deletion screenings and possible genotype-phenotype associations. In conclusion, we agree with other authors that deletion screenings should be implemented in routine genetic diagnostics of CF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. METHODS: Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. RESULTS: 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. CONCLUSIONS: Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To perform long QT syndrome and catecholaminergic polymorphic ventricular tachycardia cardiac channel postmortem genetic testing (molecular autopsy) for a large cohort of cases of autopsy-negative sudden unexplained death (SUD). METHODS From September 1, 1998, through October 31, 2010, 173 cases of SUD (106 males; mean ± SD age, 18.4 ± 12.9 years; age range, 1-69 years; 89% white) were referred by medical examiners or coroners for a cardiac channel molecular autopsy. Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, a comprehensive mutational analysis of the long QT syndrome susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) and a targeted analysis of the catecholaminergic polymorphic ventricular tachycardia type 1-associated gene (RYR2) were conducted. RESULTS Overall, 45 putative pathogenic mutations absent in 400 to 700 controls were identified in 45 autopsy-negative SUD cases (26.0%). Females had a higher yield (26/67 [38.8%]) than males (19/106 [17.9%]; P<.005). Among SUD cases with exercise-induced death, the yield trended higher among the 1- to 10-year-olds (8/12 [66.7%]) compared with the 11- to 20-year-olds (4/27 [14.8%]; P=.002). In contrast, for those who died during a period of sleep, the 11- to 20-year-olds had a higher yield (9/25 [36.0%]) than the 1- to 10-year-olds (1/24 [4.2%]; P=.01). CONCLUSION Cardiac channel molecular autopsy should be considered in the evaluation of autopsy-negative SUD. Several interesting genotype-phenotype observations may provide insight into the expected yields of postmortem genetic testing for SUD and assist in selecting cases with the greatest potential for mutation discovery and directing genetic testing efforts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Long QT syndrome (LQTS) is an arrhythmogenic ion channel disorder characterized by severely abnormal ventricular repolarization, which results in prolongation of the electrocardiographic QT interval. The condition is associated with sudden cardiac death due to malignant ventricular arrhythmias similar in form to the hallmark torsade de pointes. Eleven years after the identification of the principle cardiac channels involved in the condition, hundreds of mutations in, to date, 10 genes have been associated with the syndrome. Genetic investigations carried out up until the present have shown that, although the severe form of the disease is sporadic, there are a number of common polymorphisms in genes associated with the condition that may confer susceptibility to the development of torsade de pointes in some individuals, particularly when specific drugs are being administered. Moreover, some polymorphisms have been shown to have regulatory properties that either enhance or counteract a particular mutation's impact. Understanding of the molecular processes underlying the syndrome has enabled treatment to be optimized and has led to better survival among sufferers, thereby demonstrating a key correspondence between genotype, phenotype and therapy. Despite these developments, a quarter of patients do not have mutations in the genes identified to date. Consequently, LQTS continues to be an area of active research. This article contains a summary of the main clinical and genetic developments concerning the syndrome that have taken place during the last decade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Long QT Syndrome (LQTS) is a cardiac channelopathy characterized by prolonged ventricular repolarization and increased risk to sudden death secondary to ventricular dysrrhythmias. Was the first cardiac channelopathy described and is probably the best understood. After a decade of the sentinel identification of ion channel mutation in LQTS, genotype-phenotype correlations have been developed along with important improvement in risk stratification and genetic guided-treatment. Genetic screening has shown that LQTS is more frequent than expected and interestingly, ethnic specific polymorphism conferring increased susceptibility to drug induced QT prolongation and torsades de pointes have been identified. A better understanding of ventricular arrhythmias as an adverse effect of ion channel binding drugs, allow the development of more safety formulas and better control of this public health problem. Progress in understanding the molecular basis of LQTS has been remarkable; eight different genes have been identified, however still 25% of patients remain genotype-negative. This article is an overview of the main LQTS knowledge developed during the last years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Vascular Ehlers-Danlos syndrome (VEDS) causes reduced life expectancy because of arterial dissections/rupture and hollow organ rupture. Although the causative gene, COL3A1, was identified >20 years ago, there has been limited progress in understanding the disease mechanisms or identifying treatments. METHODS AND RESULTS We studied inflammatory and transforming growth factor-β (TGF-β) signaling biomarkers in plasma and from dermal fibroblasts from patients with VEDS. Analyses were done in terms of clinical disease severity, genotype-phenotype correlations, and body composition and fat deposition alterations. VEDS subjects had increased circulating TGF-β1, TGF-β2, monocyte chemotactic protein-1, C-reactive protein, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and leptin and decreased interleukin-8 versus controls. VEDS dermal fibroblasts secreted more TGF-β2, whereas downstream canonical/noncanonical TGF-β signaling was not different. Patients with COL3A1 exon skipping mutations had higher plasma intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and VEDS probands had abnormally high plasma C-reactive protein versus affected patients identified through family members before any disease manifestations. Patients with VEDS had higher mean platelet volumes, suggesting increased platelet turnover because of ongoing vascular damage, as well as increased regional truncal adiposity. CONCLUSIONS These findings suggest that VEDS is a systemic disease with a major inflammatory component. C-reactive protein is linked to disease state and may be a disease activity marker. No changes in downstream TGF-β signaling and increased platelet turnover suggest that chronic vascular damage may partially explain increased plasma TGF-β1. Finally, we found a novel role for dysregulated TGF-β2, as well as adipocyte dysfunction, as demonstrated through reduced interleukin-8 and elevated leptin in VEDS.