888 resultados para genome sequence


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The genetic regulation of flower color has been widely studied, notably as a character used by Mendel and his predecessors in the study of inheritance in pea. Methodology/Principal Findings We used the genome sequence of model legumes, together with their known synteny to the pea genome to identify candidate genes for the A and A2 loci in pea. We then used a combination of genetic mapping, fast neutron mutant analysis, allelic diversity, transcript quantification and transient expression complementation studies to confirm the identity of the candidates. Conclusions/Significance We have identified the pea genes A and A2. A is the factor determining anthocyanin pigmentation in pea that was used by Gregor Mendel 150 years ago in his study of inheritance. The A gene encodes a bHLH transcription factor. The white flowered mutant allele most likely used by Mendel is a simple G to A transition in a splice donor site that leads to a mis-spliced mRNA with a premature stop codon, and we have identified a second rare mutant allele. The A2 gene encodes a WD40 protein that is part of an evolutionarily conserved regulatory complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Escherichia coli sequence type 131 (ST131) is a globally disseminated, multidrug resistant (MDR) clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with several factors, including resistance to fluoroquinolones, high virulence gene content, the possession of the type 1 fimbriae FimH30 allele, and the production of the CTX-M-15 extended spectrum β-lactamase (ESBL). Here, we used genome sequencing to examine the molecular epidemiology of a collection of E. coli ST131 strains isolated from six distinct geographical locations across the world spanning 2000–2011. The global phylogeny of E. coli ST131, determined from whole-genome sequence data, revealed a single lineage of E. coli ST131 distinct from other extraintestinal E. coli strains within the B2 phylogroup. Three closely related E. coli ST131 sublineages were identified, with little association to geographic origin. The majority of single-nucleotide variants associated with each of the sublineages were due to recombination in regions adjacent to mobile genetic elements (MGEs). The most prevalent sublineage of ST131 strains was characterized by fluoroquinolone resistance, and a distinct virulence factor and MGE profile. Four different variants of the CTX-M ESBL–resistance gene were identified in our ST131 strains, with acquisition of CTX-M-15 representing a defining feature of a discrete but geographically dispersed ST131 sublineage. This study confirms the global dispersal of a single E. coli ST131 clone and demonstrates the role of MGEs and recombination in the evolution of this important MDR pathogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. In this study, we identified a new AT-encoding gene, termed upaH, present in a 6.5-kb unannotated intergenic region in the genome of the prototypic UPEC strain CFT073. Cloning and sequencing of the upaH gene from CFT073 revealed an intact 8.535-kb coding region, contrary to the published genome sequence. The upaH gene was widely distributed among a large collection of UPEC isolates as well as the E. coli Reference (ECOR) strain collection. Bioinformatic analyses suggest β-helix as the predominant structure in the large N-terminal passenger (α) domain and a 12-strand β-barrel for the C-terminal β-domain of UpaH. We demonstrated that UpaH is expressed at the cell surface of CFT073 and promotes biofilm formation. In the mouse UTI model, deletion of the upaH gene in CFT073 and in two other UPEC strains did not significantly affect colonization of the bladder in single-challenge experiments. However, in competitive colonization experiments, CFT073 significantly outcompeted its upaH isogenic mutant strain in urine and the bladder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genomes of 82 Acinetobacter baumannii global clones 1 (GC1) and 2 (GC2) isolates were sequenced and different forms of the locus predicted to direct synthesis of the outer core (OC) of the lipooligosaccharide were identified. OCL1 was in all GC2 genomes, whereas GC1 isolates carried OCL1, OCL3 or a new locus, OCL5. Three mutants in which an insertion sequence (ISAba1 or ISAba23) interrupted OCL1 were identified. Isolates with OCL1 intact produced only lipooligosaccharide, while the mutants produced lipooligosaccharide of reduced molecular weight. Thus, the assignment of the OC locus as that responsible for the synthesis of the OC is correct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tick resistant cattle could provide a potentially sustainable and environmentally sound method of controlling cattle ticks. Advances in genomics and the availability of the bovine genome sequence open up opportunities to identify useful and selectable genes controlling cattle tick resistance. Using quantitative real-time PCR and the Affymetrix bovine array platform, differences in gene expression of skin biopsies from tick resistant Bos indicus (Brahman) and tick susceptible Bos taurus (Holstein-Friesian) cattle following tick challenge were examined. We identified 138 significant differentially-expressed genes, including several immunological/host defence genes, extracellular matrix proteins, and transcription factors as well as genes involved in lipid metabolism. Three key pathways, represented by genes differentially expressed in resistant Brahmans, were identified; the development of the cell-mediated immune response, structural integrity of the dermis and intracellular Ca 2+ levels. Ca2+, which is implicated in host responses to microbial stimuli, may be required for the enhancement or fine-tuning of transcriptional activation of Ca2+- dependant host defence signalling pathways. Animal Genomics for Animal Health International Symposium, Paris, October 2007: (Proceedings)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphocholine (PCho) is an important substituent of surface structures expressed by a number of bacterial pathogens. Its role in virulence has been investigated in several species, in which it has been shown to play a role in bacterial adhesion to mucosal surfaces, in resistance to antimicrobial peptides, or in sensitivity to complement-mediated killing. The lipopolysaccharide (LPS) structure of Pasteurella multocida strain Pm70, whose genome sequence is known, has recently been determined and does not contain PCho. However, LPS structures from the closely related, virulent P. multocida strains VP161 and X-73 were shown to contain PCho on their terminal galactose sugar residues. To determine if PCho was involved in the virulence of P. multocida, we used subtractive hybridization of the VP161 genome against the Pm70 genome to identify a four-gene locus (designated pcgDABC) which we show is required for the addition of the PCho residues to LPS. The proteins predicted to be encoded by pcgABC showed identity to proteins involved in choline uptake, phosphorylation, and nucleotide sugar activation of PCho. We constructed a P. multocida VP161 pcgC mutant and demonstrated that this strain produces LPS that lacks PCho on the terminal galactose residues. This pcgC mutant displayed reduced in vivo growth in a chicken infection model and was more sensitive to the chicken antimicrobial peptide fowlicidin-1 than the wild-type P. multocida strain

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although monocotyledonous-plant-infecting mastreviruses (in the family Geminiviridae) are known to cause economically significant crop losses in certain areas of the world, in Australia, they pose no obvious threat to agriculture. Consequently, only a few Australian monocot-infecting mastreviruses have been described, and only two have had their genomes fully sequenced. Here, we present the third full-genome sequence of an Australian monocot-infecting mastrevirus from Bromus catharticus belonging to a distinct species, which we have tentatively named Bromus catharticus striate mosaic virus (BCSMV). Although the genome of this new virus shares only 57.7% sequence similarity with that of its nearest known relative, Digitaria didactyla striate mosaic virus (DDSMV; also from Australia), it has features typical of all other known mastrevirus genomes. Phylogenetic analysis showed that both the full genome and each of its probable expressed proteins group with the two other characterised Australian monocot-infecting mastreviruses. Besides the BCSMV genome sequence revealing that Australian monocot-infecting mastrevirus diversity rivals that seen in Africa, it has enabled us, for the first, to time detect evidence of recombination amongst the Australian viruses. Specifically, it appears that DDSMV possesses a short intergenic region sequence that has been recombinationally derived from either BCSMV or a close relative that has not yet been identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Parechoviruses (HPEV) belong to the family Picornaviridae of positive-stranded RNA viruses. Although the parechovirus genome shares the general properties of other picornaviruses, the genus has several unique features when compared to other family members. We found that HPEV1 attaches to αv integrins on the cell surface and is internalized through the clathrin-mediated endocytic pathway. During he course of the infection, the Golgi was found to disintegrate and the ER membranes to swell and loose their ribosomes. The replication of HPEV1 was found to take place on small clusters of vesicles which contained the trans-Golgi marker GalT as well as the viral non-structural 2C protein. 2C was additionally found on stretches of modified ER-membranes, seemingly not involved in RNA replication. The viral non-structural 2A and 2C proteins were studied in further detail and were found to display several interesting features. The 2A protein was found to be a RNA-binding protein that preferably binds to positive sense 3 UTR RNA. It was found to bind also duplex RNA containing 3 UTR(+)-3 UTR(-), but not other dsRNA molecules studied. Mutagenesis revealed that the N-terminal basic-rich region as well as the C-terminus, are important for RNA-binding. The 2C protein on the other hand, was found to have both ATP-diphosphohydrolase and AMP kinase activities. Neither dATP nor other NTP:s were suitable substrates. Furthermore, we found that as a result of theses activities the protein is autophosphorylated. The intracellular changes brought about by the individual HPEV1 non-structural proteins were studied through the expression of fusion proteins. None of the proteins expressed were able to induce membrane changes similar to those seen during HPEV1 infection. However, the 2C protein, which could be found on the surface of lipid droplets but also on diverse intracellular membranes, was partly relocated to viral replication complexes in transfected, superinfected cells. Although Golgi to ER traffic was arrested in HPEV1-infected cells, none of the individually expressed non-structural proteins had any visible effect on the anterograde membrane traffic. Our results suggest that the HPEV1 replication strategy is different from that of many other picornaviruses. Furthermore, this study shows how relatively small differences in genome sequence result in very different intracellular pathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cotton bunchy top (CBT) disease has caused significant yield losses in Australia and is now managed by control of its vector, the cotton aphid (Aphis gossypii). Its mode of transmission and similarities in symptoms to cotton Blue Disease suggested it may also be caused by a luteovirus or related virus. Degenerate primers to conserved regions of the genomes of the family Luteoviridae were used to amplify viral cDNAs from CBT-affected cotton leaf tissue that were not present in healthy plants. Partial genome sequence of a new virus (Cotton bunchy top virus, CBTV) was obtained spanning part of the RNA-dependent-RNA-polymerase (RdRP), all of the coat protein and part of the aphid-transmission protein. CBTV sequences could be detected in viruliferous aphids able to transmit CBT, but not aphids from non-symptomatic plants, indicating that it is associated with the disease and may be the causal agent. All CBTV open-reading frames had their closest similarity to viruses of the genus Polerovirus. The partial RdRP had 90 % amino acid identity to the RdRP of Cotton leafroll dwarf virus (CLRDV) that causes cotton blue disease, while other parts of the genome were more similar to other poleroviruses. The sequence similarity and genome organization of CBTV suggest that it should be considered a new member of the genus Polerovirus. This partial genome sequence of CBTV opens up the possibility for developing diagnostic tests for detection of the virus in cotton plants, aphids and weeds as well as alternative strategies for engineering CBT resistance in cotton plants through biotechnology. © 2012 Australasian Plant Pathology Society Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Rhipicephalus micro plus genome is large and complex in structure, making it difficult to assemble a genome sequence and costly to resource the required bioinformatics. In light of this, a consortium of international collaborators was formed to pool resources to begin sequencing this genome. We have acquired and assembled genomic DNA into contigs that represent over 1.8 Gigabase pairs of DNA from gene-enriched regions of the R. micro plus genome. We also have several datasets containing transcript sequences from a number of gene expression experiments conducted by the consortium. A web-based resource was developed to enable the scientific community to access our datasets and conduct analysis through a web-based bioinformatics environment called YABI. The collective bioinformatics resource is termed CattleTickBase. Our consortium has acquired genomic and transcriptomic sequence data at approximately 0.9X coverage of the gene-coding regions of the R. microplus genome. The YABI tool will facilitate access and manipulation of cattle tick genome sequence data as the genome sequencing of R. microplus proceeds. During this process the CattleTickBase resource will continue to be updated. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In May 2013, the first cases of Australian bat lyssavirus infections in domestic animals were identified in Australia. Two horses (filly-H1 and gelding-H2) were infected with the Yellow-bellied sheathtail bat (YBST) variant of Australian bat lyssavirus (ABLV). The horses presented with neurological signs, pyrexia and progressing ataxia. Intra-cytoplasmic inclusion bodies (Negri bodies) were detected in some Purkinje neurons in haematoxylin and eosin (H&E) stained sections from the brain of one of the two infected horses (H2) by histological examination. A morphological diagnosis of sub-acute moderate non-suppurative, predominantly angiocentric, meningo-encephalomyelitis of viral aetiology was made. The presumptive diagnosis of ABLV infection was confirmed by the positive testing of the affected brain tissue from (H2) in a range of laboratory tests including fluorescent antibody test (FAT) and real-time PCR targeting the nucleocapsid (N) gene. Retrospective testing of the oral swab from (H1) in the real-time PCR also returned a positive result. The FAT and immunohistochemistry (IHC) revealed an abundance of ABLV antigen throughout the examined brain sections. ABLV was isolated from the brain (H2) and oral swab/saliva (H1) in the neuroblastoma cell line (MNA). Alignment of the genome sequence revealed a 97.7% identity with the YBST ABLV strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Partial virus genome sequence with high nucleotide identity to Cotton leafroll dwarf virus (CLRDV) was identified from two cotton (Gossypium hirsutum) samples from Thailand displaying typical cotton leaf roll disease symptoms. We developed and validated a PCR assay for the detection of CLRDV isolates from Thailand and Brazil.