975 resultados para genetically modified


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La ingeniería genética y la reprogramación de organismos vivos representan las nuevas fronteras biotecnológicas que permitirán generar animales con modificaciones precisas en sus genomas para un sinnúmero de aplicaciones biomédicas y agropecuarias. Las técnicas para inducir modificaciones génicas intencionales en animales, especialmente en especies mayores de interés agropecuario, se encuentran rezagadas si se compara con los avances significativos que se han producido en el área de la transgénesis de roedores de laboratorio, especialmente el ratón. Es así que, el presente proyecto persigue desarrollar y optimizar protocolos para generar embriones bovinos transgénicos para aplicaciones biotecnológicas. La estrategia propuesta, se basa en conseguir la presencia simultánea en el interior celular de una enzima de restricción (I-SceI) más un transgén (formado por casetes de expresión de una proteína fluorescente -ZsGreen1- y neomicina fosfotransferasa). Específicamente, proyectamos estudiar una vía alternativa para generar embriones bovinos transgénicos mediante la incorporación del transgén (casetes ZsGreen1 y neo) flanqueado por sitios I-SceI más la enzima I-SceI al interior del ovocito junto con el espermatozoide durante la técnica conocida como inyección intracitoplasmática de espermatozoides (ICSI). Los embriones así generados se cultivarán in vitro, inspeccionándolos diariamente para detectar la emisión de fluorescencia, indicativa de la expresión de la proteína ZsGreen1. Los embriones que alcancen el estado de blastocisto y expresen el transgén se transferirán quirúrgicamente al útero de ovejas sincronizadas y se mantendrán durante 7 días. Al cabo de este período, los embriones se recolectarán quirúrgicamente del útero ovino y se transportarán al laboratorio para determinar el número de sitios de integración y número de copias del transgén mediante el análisis de su ADN por Southern blot. Se prevé que los resultados de esta investigación permitirán sentar las bases para el desarrollo de métodos eficientes para obtener modificaciones precisas en el genoma de los animales domésticos para futuras aplicaciones biotecnológicas. Genetic engineering and reprogrammed organisms represent the new biotechnological frontiers which will make possible to generate animals with precise genetic modifications for agricultural and biomedical applications. Current methods used to generate genetically modified large animals, lay behind those used in laboratory animals, specially the mouse. Therefore, we seek to develop and optimize protocols to produce transgenic bovine embryos through the use of a non-viral vector. The strategy involves the simultaneous presence inside the cell of a restriction enzyme (I-SceI) and a transgene (carrying cassettes for a fluorescent protein -ZsGreen1- and neomycin phosphotransferase) flanked by restriction sites for the endonuclease. We plan to develop an alternative approach to generate transgenic bovine embryos by coinjecting the transgene flanked by I-SceI restriction sites plus the enzyme I-SceI along with the spermatozoon during the technique known as intracytoplasmic sperm injection (ICSI). Embryos will be cultured in vitro and inspected daily with a fluorescence microscope to characterize transgene expression. Embryos that reach the blastocyst stage and express the transgene will be surgically transfer to the uterus of a synchronized ewe. After 7 days, the embryos will be flushed out the ovine uterus and transported to the laboratory to determine the number of integration sites and transgene copies by Southern blot. We anticipate that results from this research will set the stage for the development of efficient strategies to achieve precise genetic modifications in large domestic animals for future biotechnological applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lymphatic vasculature is important for the regulation of tissue fluid homeostasis, immune response, and lipid absorption, and the development of in vitro models should allow for a better understanding of the mechanisms regulating lymphatic vascular growth, repair, and function. Here we report isolation and characterization of lymphatic endothelial cells from human intestine and show that intestinal lymphatic endothelial cells have a related but distinct gene expression profile from human dermal lymphatic endothelial cells. Furthermore, we identify liprin beta1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, as highly expressed in intestinal lymphatic endothelial cells in vitro and lymphatic vasculature in vivo, and show that it plays an important role in the maintenance of lymphatic vessel integrity in Xenopus tadpoles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The peroxisome targeting signal (PTS) required for import of the rat acyl-CoA oxidase (AOX; EC 1.3.3.6) and the Candida tropicalis multifunctional protein (MFP) in plant peroxisomes was assessed in transgenic Arabidopsis thaliana (L.) Heynh. The native rat AOX accumulated in peroxisomes in A. thaliana cotyledons and targeting was dependent on the presence of the C-terminal tripeptide S-K-L. In contrast, the native C. tropicalis MFP, containing the consensus PTS sequence A-K-I was not targeted to plant peroxisomes. Modification of the carboxy terminus to the S-K-L tripeptide also failed to deliver the MFP to peroxisomes while addition of the last 34 amino acids of the Brassica napus isocitrate lyase, containing the terminal tripeptide S-R-M, enabled import of the fusion protein into peroxisomes. These results underline the influence of the amino acids adjacent to the terminal tripeptide of the C. tropicalis MFP on peroxisomal targeting, even in the context of a protein having a consensus PTS sequence S-K-L.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybridization has played a central role in the evolutionary history of domesticated plants. Notably, several breeding programs relying on gene introgression from the wild compartment have been performed in fruit tree species within the genus Prunus but few studies investigated spontaneous gene flow among wild and domesticated Prunus species. Consequently, a comprehensive understanding of genetic relationships and levels of gene flow between domesticated and wild Prunus species is needed. Combining nuclear and chloroplastic microsatellites, we investigated the gene flow and hybridization among two key almond tree species, the cultivated Prunus dulcis and one of the most widespread wild relative Prunus orientalis in the Fertile Crescent. We detected high genetic diversity levels in both species along with substantial and symmetric gene flow between the domesticated P. dulcis and the wild P. orientalis. These results were discussed in light of the cultivated species diversity, by outlining the frequent spontaneous genetic contributions of wild species to the domesticated compartment. In addition, crop-to-wild gene flow suggests that ad hoc transgene containment strategies would be required if genetically modified cultivars were introduced in the northwestern Mediterranean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: EMD 521873 (Selectikine), an immunocytokine comprising a DNA-targeting antibody, aimed at tumour necrosis, fused with a genetically modified interleukin-2 (IL-2) moiety, was investigated in this first-in-human phase I study. METHODS: Patients had metastatic or locally advanced solid tumours failing previous standard therapy. Selectikine was administered as a 1-hour intravenous infusion on 3 consecutive days, every 3weeks. A subgroup of patients also received 300mg/m(2) cyclophosphamide on day 1 of each cycle. Escalating doses of Selectikine were investigated with the primary objective of determining the maximum tolerated dose (MTD). RESULTS: Thirty-nine patients were treated with Selectikine alone at dose levels from 0.075 to 0.9mg/kg, and nine were treated at doses of 0.45 and 0.6mg/kg in combination with cyclophosphamide. A dose-dependent linear increase of peak serum concentrations and area under curve was found. The dose-limiting toxicity was grade 3 skin rash at the 0.9mg/kg dose-level; the MTD was 0.6mg/kg. Rash and flu-like symptoms were the most frequent side-effects. No severe cardiovascular side-effects (hypotension or vascular leak) were observed. At all dose-levels, transient increases in total lymphocyte, eosinophil and monocyte counts were recorded. No objective tumour responses, but long periods of disease stabilisation were observed. Transient and non-neutralising Selectikine antibodies were detected in 69% of patients. CONCLUSIONS: The MTD of Selectikine with or without cyclophosphamide administered under this schedule was 0.6mg/kg. The recommended phase II dose was 0.45-0.6mg/kg. Selectikine had a favourable safety profile and induced biological effects typical for IL-2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γδ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane trafficking in a developmental context, and in diverse, specialized cell types. These include defense responses to pathogens, regulation of transporter accumulation in plant nutrition or polar auxin transport in development. In all of these cases a central role is played by the endosomal membrane system, which, however, is the most divergent and ill-defined aspect of plant cell compartmentation. We have designed a new vector series, and have generated a large number of stably transformed plants expressing membrane protein fusions to spectrally distinct, fluorescent tags. We selected lines with distinct subcellular localization patterns, and stable, non-toxic expression. We demonstrate the power of this multicolor 'Wave' marker set for rapid, combinatorial analysis of plant cell membrane compartments, both in live-imaging and immunoelectron microscopy. Among other findings, our systematic co-localization analysis revealed that a class of plant Rab1-homologs has a much more extended localization than was previously assumed, and also localizes to trans-Golgi/endosomal compartments. Constructs that can be transformed into any genetic background or species, as well as seeds from transgenic Arabidopsis plants, will be freely available, and will promote rapid progress in diverse areas of plant cell biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The provenance, half-life and biological activity of malondialdehyde (MDA) were investigated in Arabidopsis thaliana. We provide genetic confirmation of the hypothesis that MDA originates from fatty acids containing more than two methylene-linked double bonds, showing that tri-unsaturated fatty acids are the in vivo source of up to 75% of MDA. The abundance of the combined pool of free and reversibly bound MDA did not change dramatically in stress, although a significant increase in the free MDA pool under oxidative conditions was observed. The half-life of infiltrated MDA indicated rapid metabolic turnover/sequestration. Exposure of plants to low levels of MDA using a recently developed protocol powerfully upregulated many genes on a cDNA microarray with a bias towards those implicated in abiotic/environmental stress (e.g. ROF1 and XERO2). Remarkably, and in contrast to the activities of other reactive electrophile species (i.e. small vinyl ketones), none of the pathogenesis-related (PR) genes tested responded to MDA. The use of structural mimics of MDA isomers suggested that the propensity of the molecule to act as a cross-linking/modifying reagent might contribute to the activation of gene expression. Changes in the concentration/localisation of unbound MDA in vivo could strongly affect stress-related transcription.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmembrane receptor-kinases are widespread throughout eukaryotes and their activities are known to regulate all kinds of cellular responses in diverse organs and cell types. In order to guarantee the correct amplitude and duration of signals, receptor levels at the cellular surface need to be tightly controlled. The regulation of receptor degradation is the most direct way to achieve this and elaborate mechanisms are in place to control this process. Therefore, the rate of receptor degradation is a parameter of central importance for understanding the dynamics of a signal transduction cascade. Unfortunately, degradation of transmembrane receptors is a complicated multistep process that involves internalization from the plasma membrane, invagination into the lumen of endosomal compartments, and finally fusion with the vacuole for degradation by vacuolar proteases. Therefore, degradation should be measured in an as noninvasive way as possible, such as not to interfere with the complicated transport processes. Here, a method for minimally invasive, in vivo turn-over measurements in intact organs is provided. This technique was used for quantifying the turn-over rates of the Brassinosteroid receptor kinase BRI1 (BRASSINOSTEROID INSENSITIVE 1) in Arabidopsis thaliana root meristems. Pulse-chase expression of a fluorescently labeled BRI1 variant was used and its turn-over rate was determined by quantitative confocal microscopy. This method is well suited to measure turn-over of transmembrane kinases, but can evidently be extended to measure turn-over of any types of transmembrane proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to detect early molecular responses to various chemicals is central to the understanding of biological impact of pollutants in a context of varying environmental cues. To monitor stress responses in a model plant, we used transgenic moss Physcomitrella patens expressing the beta-glucuronidase reporter (GUS) under the control of the stress-inducible promoter hsp17.3B. Following exposure to pollutants from the dye and paper industry, GUS activity was measured by monitoring a fluorescent product. Chlorophenols, heavy metals and sulphonated anthraquinones were found to specifically activate the hsp17.3B promoter (within hours) in correlation with long-term toxicity effects (within days). At mildly elevated physiological temperatures, the chemical activation of this promoter was strongly amplified, which considerably increased the sensitivity of the bioassay. Together with the activation of hsp17.3B promoter, chlorophenols induced endogenous chaperones that transiently protected a recombinant thermolabile luciferase (LUC) from severe heat denaturation. This sensitive bioassay provides an early warning molecular sensor to industrial pollutants under varying environments, in anticipation to long-term toxic effects in plants. Because of the strong cross-talk between abiotic and chemical stresses that we find, this P. patens line is more likely to serve as a direct toxicity bioassay for pollutants combined with environmental cues, than as an indicator of absolute toxicity thresholds for various pollutants. It is also a powerful tool to study the role of heat shock proteins (HSPs) in plants exposed to combined chemical and environmental stresses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phagocytosis, whether of food particles in protozoa or bacteria and cell remnants in the metazoan immune system, is a conserved process. The particles are taken up into phagosomes, which then undergo complex remodeling of their components, called maturation. By using two-dimensional gel electrophoresis and mass spectrometry combined with genomic data, we identified 179 phagosomal proteins in the amoeba Dictyostelium, including components of signal transduction, membrane traffic, and the cytoskeleton. By carrying out this proteomics analysis over the course of maturation, we obtained time profiles for 1,388 spots and thus generated a dynamic record of phagosomal protein composition. Clustering of the time profiles revealed five clusters and 24 functional groups that were mapped onto a flow chart of maturation. Two heterotrimeric G protein subunits, Galpha4 and Gbeta, appeared at the earliest times. We showed that mutations in the genes encoding these two proteins produce a phagocytic uptake defect in Dictyostelium. This analysis of phagosome protein dynamics provides a reference point for future genetic and functional investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All developmental transitions throughout the life cycle of a plant are influenced by light. In Arabidopsis, multiple photoreceptors including the UV-A/blue-sensing cryptochromes (cry1-2) and the red/far-red responsive phytochromes (phyA-E) monitor the ambient light conditions. Light-regulated protein stability is a major control point of photomorphogenesis. The ubiquitin E3 ligase COP1 (constitutively photomorphogenic 1) regulates the stability of several light-signaling components. HFR1 (long hypocotyl in far-red light) is a putative transcription factor with a bHLH domain acting downstream of both phyA and the cryptochromes. HFR1 is closely related to PIF1, PIF3, and PIF4 (phytochrome interacting factor 1, 3 and 4), but in contrast to the latter three, there is no evidence for a direct interaction between HFR1 and the phytochromes. Here, we show that the protein abundance of HFR1 is tightly controlled by light. HFR1 is an unstable phosphoprotein, particularly in the dark. The proteasome and COP1 are required in vivo to degrade phosphorylated HFR1. In addition, HFR1 can interact with COP1, consistent with the idea of COP1 directly mediating HFR1 degradation. We identify a domain, conserved among several bHLH class proteins involved in light signaling , as a determinant of HFR1 stability. Our physiological experiments indicate that the control of HFR1 protein abundance is important for a normal de-etiolation response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) homeostasis in multi-cellular eukaryotes depends not only on Pi influx into cells, but also on Pi efflux. Examples in plants for which Pi efflux is crucial are transfer of Pi into the xylem of roots and release of Pi at the peri-arbuscular interface of mycorrhizal roots. Despite its importance, no protein has been identified that specifically mediates phosphate efflux either in animals or plants. The Arabidopsis thaliana PHO1 gene is expressed in roots, and was previously shown to be involved in long-distance transfer of Pi from the root to the shoot. Here we show that PHO1 over-expression in the shoot of A. thaliana led to a two- to threefold increase in shoot Pi content and a severe reduction in shoot growth. (31) P-NMR in vivo showed a normal initial distribution of intracellular Pi between the cytoplasm and the vacuole in leaves over-expressing PHO1, followed by a large efflux of Pi into the infiltration medium, leading to a rapid reduction of the vacuolar Pi pool. Furthermore, the Pi concentration in leaf xylem exudates from intact plants was more than 100-fold higher in PHO1 over-expressing plants compared to wild-type. Together, these results show that PHO1 over-expression in leaves leads to a dramatic efflux of Pi out of cells and into the xylem vessel, revealing a crucial role for PHO1 in Pi efflux.