916 resultados para genetic variants
Resumo:
Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a genome-wide association scan (GWAS) meta-analysis using three richly characterized datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected P≈10 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills. Genome-wide association scan meta-analysis for reading and language ability. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Resumo:
BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk
Resumo:
Diabetes is the leading cause of end stage renal disease. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2,843 subjects, we estimated that the heritability of diabetic kidney disease was 35% ( p=6x10-3 ). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index ( p=2.2×10-5) and the risk of type 2 diabetes (p=6.1x10-4 ) were associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation ( p=1.1×10-4 ). Pathway analysis implicated ascorbate and aldarate metabolism ( p=9×10-6), and pentose and glucuronate interconversions ( p=3×10-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
Resumo:
This chapter reviews genetic studies that have aimed to identify genes influencing psychological traits in infancy (from birth to age 12 months), and considers how this research informs us about the causes of developmental psychopathology. Specifically, this chapter systematically reviews findings from studies that associated common genetic variants with individual variation in infants’ attention, temperament and behaviour, and attachment disorganisation. DRD4 and 5-HTTLPR genes were the most frequently studied candidate genes. Possibly the most coherent set of results relates to the L-DRD4 genotype, which is significantly associated with infant attention, temperament, and attachment style. Research in infant genetics has been strengthened by a careful focus on uniform age ranges within studies, by several longitudinal studies, and by exploration of gene-environment interactions between genes and maternal characteristics. However there is also considerable inconsistency in results in this field and possible reasons for this are discussed. The chapter outlines the main genetic methods that have been used and what new genetic approaches such as polygenic risk scoring could offer infant genetics. Recent findings suggest that some traits during infancy predict individual differences in developmental psychopathology in childhood. It is argued that infant genetic research has considerable potential for the identification of populations at risk for psychopathology in later life, and this remains an area open for future research.
Resumo:
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1G>C)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5'-UTR of HAMP gene (c.-25G>A). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.
Resumo:
OBJECTIVE: To test common genetic variants for association with seasonality (seasonal changes in mood and behavior) and to investigate whether there are shared genetic risk factors between psychiatric disorders and seasonality. METHOD: Genome-wide association studies (GWASs) were conducted in Australian (between 1988 and 1990 and between 2010 and 2013) and Amish (between May 2010 and December 2011) samples in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered, and the results were meta-analyzed in a total sample of 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder, major depressive disorder (MDD), and schizophrenia were calculated to test for overlap in risk between psychiatric disorders and seasonality. RESULTS: The most significant association was with rs11825064 (P = 1.7 × 10⁻⁶, β = 0.64, standard error = 0.13), an intergenic single nucleotide polymorphism (SNP) found on chromosome 11. The evidence for overlap in risk factors was strongest for schizophrenia and seasonality, with the schizophrenia genetic profile scores explaining 3% of the variance in log-transformed global seasonality scores. Bipolar disorder genetic profile scores were also associated with seasonality, although at much weaker levels (minimum P value = 3.4 × 10⁻³), and no evidence for overlap in risk was detected between MDD and seasonality. CONCLUSIONS: Common SNPs of large effect most likely do not exist for seasonality in the populations examined. As expected, there were overlapping genetic risk factors for bipolar disorder (but not MDD) with seasonality. Unexpectedly, the risk for schizophrenia and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and schizophrenia.
Resumo:
The interleukin-4 (IL-4) signalling cascade has been identified as a pathway potentially important in the development of asthma. Genetic variants within this signalling pathway might contribute to the risk of developing asthma in a given individual. A number of polymorphisms have been described within the IL-4 receptor alpha (IL-4Ralpha) gene. In addition polymorphism occurs in the promoter for the IL-4 gene itself. This commentary accompanies a paper by C Ober et al describing the contribution of IL-4Ralpha polymorphism to susceptibility to asthma and atopy in the Hutterite population and other outbred populations collected during the collaborative studies on the genetics of asthma (CSGA) programme
Epidemiology and genetic architecture of blood pressure: a family based study of Generation Scotland
Resumo:
Hypertension is a major risk factor for cardiovascular disease and mortality, and a growing global public health concern, with up to one-third of the world’s population affected. Despite the vast amount of evidence for the benefits of blood pressure (BP) lowering accumulated to date, elevated BP is still the leading risk factor for disease and disability worldwide. It is well established that hypertension and BP are common complex traits, where multiple genetic and environmental factors contribute to BP variation. Furthermore, family and twin studies confirmed the genetic component of BP, with a heritability estimate in the range of 30-50%. Contemporary genomic tools enabling the genotyping of millions of genetic variants across the human genome in an efficient, reliable, and cost-effective manner, has transformed hypertension genetics research. This is accompanied by the presence of international consortia that have offered unprecedentedly large sample sizes for genome-wide association studies (GWASs). While GWAS for hypertension and BP have identified more than 60 loci, variants in these loci are associated with modest effects on BP and in aggregate can explain less than 3% of the variance in BP. The aims of this thesis are to study the genetic and environmental factors that influence BP and hypertension traits in the Scottish population, by performing several genetic epidemiological analyses. In the first part of this thesis, it aims to study the burden of hypertension in the Scottish population, along with assessing the familial aggregation and heritialbity of BP and hypertension traits. In the second part, it aims to validate the association of common SNPs reported in the large GWAS and to estimate the variance explained by these variants. In this thesis, comprehensive genetic epidemiology analyses were performed on Generation Scotland: Scottish Family Health Study (GS:SFHS), one of the largest population-based family design studies. The availability of clinical, biological samples, self-reported information, and medical records for study participants has allowed several assessments to be performed to evaluate factors that influence BP variation in the Scottish population. Of the 20,753 subjects genotyped in the study, a total of 18,470 individuals (grouped into 7,025 extended families) passed the stringent quality control (QC) criteria and were available for all subsequent analysis. Based on the BP-lowering treatment exposure sources, subjects were further classified into two groups. First, subjects with both a self-reported medications (SRMs) history and electronic-prescription records (EPRs; n =12,347); second, all the subjects with at least one medication history source (n =18,470). In the first group, the analysis showed a good concordance between SRMs and EPRs (kappa =71%), indicating that SRMs can be used as a surrogate to assess the exposure to BP-lowering medication in GS:SFHS participants. Although both sources suffer from some limitations, SRMs can be considered the best available source to estimate the drug exposure history in those without EPRs. The prevalence of hypertension was 40.8% with higher prevalence in men (46.3%) compared to women (35.8%). The prevalence of awareness, treatment and controlled hypertension as defined by the study definition were 25.3%, 31.2%, and 54.3%, respectively. These findings are lower than similar reported studies in other populations, with the exception of controlled hypertension prevalence, which can be considered better than other populations. Odds of hypertension were higher in men, obese or overweight individuals, people with a parental history of hypertension, and those living in the most deprived area of Scotland. On the other hand, deprivation was associated with higher odds of treatment, awareness and controlled hypertension, suggesting that people living in the most deprived area may have been receiving better quality of care, or have higher comorbidity levels requiring greater engagement with doctors. These findings highlight the need for further work to improve hypertension management in Scotland. The family design of GS:SFHS has allowed family-based analysis to be performed to assess the familial aggregation and heritability of BP and hypertension traits. The familial correlation of BP traits ranged from 0.07 to 0.20, and from 0.18 to 0.34 for parent-offspring pairs and sibling pairs, respectively. A higher correlation of BP traits was observed among first-degree relatives than other types of relative pairs. A variance-component model that was adjusted for sex, body mass index (BMI), age, and age-squared was used to estimate heritability of BP traits, which ranged from 24% to 32% with pulse pressure (PP) having the lowest estimates. The genetic correlation between BP traits showed a high correlation between systolic (SBP), diastolic (DBP) and mean arterial pressure (MAP) (G: 81% to 94%), but lower correlations with PP (G: 22% to 78%). The sibling recurrence risk ratio (λS) for hypertension and treatment were calculated as 1.60 and 2.04 respectively. These findings confirm the genetic components of BP traits in GS:SFHS, and justify further work to investigate genetic determinants of BP. Genetic variants reported in the recent large GWAS of BP traits were selected for genotyping in GS:SFHS using a custom designed TaqMan® OpenArray®. The genotyping plate included 44 single nucleotide polymorphisms (SNPs) that have been previously reported to be associated with BP or hypertension at genome-wide significance level. A linear mixed model that is adjusted for age, age-squared, sex, and BMI was used to test for the association between the genetic variants and BP traits. Of the 43 variants that passed the QC, 11 variants showed statistically significant association with at least one BP trait. The phenotypic variance explained by these variant for the four BP traits were 1.4%, 1.5%, 1.6%, and 0.8% for SBP, DBP, MAP, and PP, respectively. The association of genetic risk score (GRS) that were constructed from selected variants has showed a positive association with BP level and hypertension prevalence, with an average effect of one mmHg increase with each 0.80 unit increases in the GRS across the different BP traits. The impact of BP-lowering medication on the genetic association study for BP traits has been established, with typical practice of adding a fixed value (i.e. 15/10 mmHg) to the measured BP values to adjust for BP treatment. Using the subset of participants with the two treatment exposure sources (i.e. SRMs and EPRs), the influence of using either source to justify the addition of fixed values in SNP association signal was analysed. BP phenotypes derived from EPRs were considered the true phenotypes, and those derived from SRMs were considered less accurate, with some phenotypic noise. Comparing SNPs association signals between the four BP traits in the two model derived from the different adjustments showed that MAP was the least impacted by the phenotypic noise. This was suggested by identifying the same overlapped significant SNPs for the two models in the case of MAP, while other BP traits had some discrepancy between the two sources
Resumo:
Erratum in: Low-frequency and common genetic variation in ischemic stroke: The METASTROKE collaboration. [Neurology. 2016]
Resumo:
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1GNC)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5′-UTR of HAMP gene(c.-25GNA). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.
Resumo:
Dyslipidemia is a major public health problem, and therefore, it is important to develop dietary strategies to diminish the prevalence of this disorder. It was recently reported that diet may play an important role in triggering insulin resistance by interacting with genetic variants at the CAPN10 gene locus in patients with metabolic syndrome. Nonetheless, it remains unknown whether genetic variants of genes involved in the development of type 2 diabetes are associated with variations in high-density lipoprotein cholesterol (HDL-C). The study used a single-center, prospective, cohort design. Here, we assessed the effect of four variants of the CAPN10 gene on HDL-C levels in response to a soy protein and soluble fiber dietary portfolio in subjects with dyslipidemia. In 31 Mexican dyslipidemic individuals, we analyzed four CAPN10 gene variants (rs5030952, rs2975762, rs3792267, and rs2975760) associated with type 2 diabetes. Subjects with the GG genotype of the rs2975762 variant of the CAPN10 gene were better responders to dietary intervention, showing increased HDL-C concentrations from the first month of treatment. HDL-C concentrations in participants with the wild type genotype increased by 17.0%, whereas the HDL-C concentration in subjects with the variant genotypes increased by only 3.22% (p = 0.03); the low-density lipoprotein cholesterol levels of GG carriers tended to decrease (-12.6%). These results indicate that Mexican dyslipidemic carriers of the rs2975762-GG genotype are better responders to this dietary intervention.
Resumo:
Different selection objectives within the Quarter Horse breed led to the formation of groups with distinct skills, including the racing and cutting lines. With a smaller population size in Brazil, but of great economic representativeness, the racing line is characterized by animals that can reach high speeds over short distances and within a short period of time. The cutting line is destined for functional tests, exploring skills such as agility and obedience. Although the athletic performance of horses is likely to be influenced by a large number of genes, few genetic variants have so far been related to this trait and this was done exclusively in Thoroughbreds, including the g.38973231G>A singlenucleotide polymorphism in the PDK4 gene and the g.22684390C>T single-nucleotide polymorphism in the COX4I2 gene. The results of the present study demonstrate the presence of polymorphic PDK4 and COX4I2 genes in Quarter Horses. The analysis of 296 racing animals and 68 cutting animals revealed significant differences in allele and genotype frequencies between the two lines. The same was not observed when these frequencies were compared between extreme racing performance phenotypes. There were also no significant associations between alleles of the two polymorphisms and the speed index. These results suggest that the alleles of the PDK4 and COX4I2 genes, which are related to better racecourse performance in Thoroughbreds, are probably associated with beneficial adaptations in aerobic metabolism and therefore play secondary roles in sprint racing performance in Quarter Horses, which is mainly anaerobic.
Resumo:
Understanding the complexities that are involved in the genetics of multifactorial diseases is still a monumental task. In addition to environmental factors that can influence the risk of disease, there is also a number of other complicating factors. Genetic variants associated with age of disease onset may be different from those variants associated with overall risk of disease, and variants may be located in positions that are not consistent with the traditional protein coding genetic paradigm. Latent Variable Models are well suited for the analysis of genetic data. A latent variable is one that we do not directly observe, but which is believed to exist or is included for computational or analytic convenience in a model. This thesis presents a mixture of methodological developments utilising latent variables, and results from case studies in genetic epidemiology and comparative genomics. Epidemiological studies have identified a number of environmental risk factors for appendicitis, but the disease aetiology of this oft thought useless vestige remains largely a mystery. The effects of smoking on other gastrointestinal disorders are well documented, and in light of this, the thesis investigates the association between smoking and appendicitis through the use of latent variables. By utilising data from a large Australian twin study questionnaire as both cohort and case-control, evidence is found for the association between tobacco smoking and appendicitis. Twin and family studies have also found evidence for the role of heredity in the risk of appendicitis. Results from previous studies are extended here to estimate the heritability of age-at-onset and account for the eect of smoking. This thesis presents a novel approach for performing a genome-wide variance components linkage analysis on transformed residuals from a Cox regression. This method finds evidence for a dierent subset of genes responsible for variation in age at onset than those associated with overall risk of appendicitis. Motivated by increasing evidence of functional activity in regions of the genome once thought of as evolutionary graveyards, this thesis develops a generalisation to the Bayesian multiple changepoint model on aligned DNA sequences for more than two species. This sensitive technique is applied to evaluating the distributions of evolutionary rates, with the finding that they are much more complex than previously apparent. We show strong evidence for at least 9 well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least 7 classes in an alignment of four mammals, including human. A pattern of enrichment and depletion of genic regions in the profiled segments suggests they are functionally significant, and most likely consist of various functional classes. Furthermore, a method of incorporating alignment characteristics representative of function such as GC content and type of mutation into the segmentation model is developed within this thesis. Evidence of fine-structured segmental variation is presented.
Resumo:
Abstract Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9.
Resumo:
As family history has been established as a risk factor for prostate cancer, attempts have been made to isolate predisposing genetic variants that are related to hereditary prostate cancer. With many genetic variants still to be identified and investigated, it is not yet possible to fully understand the impact of genetic variants on prostate cancer development. The high survival rates among men with prostate cancer have meant that other issues, such as quality of life (QoL), have also become important. Through their effect on a person’s health, a range of inherited genetic variants may potentially influence QoL in men with prostate cancer, even prior to treatment. Until now, limited research has been conducted on the relationship between genetics and QoL. Thus, this study contributes to an emerging field by aiming to identify certain genetic variants related to the QoL found in men with prostate cancer. It is hoped that this study may lead to future research that will identify men who have an increased risk of a poor QoL following prostate cancer treatment, which will aid in developing treatments that are individually tailored to support them. Previous studies have established that genetic variants of Vascular Endothelial Growth Factor (VEGF) and Insulin-like Growth Factor 1 (IGF-1) may play a role in prostate cancer development. VEGF and IGF-1 have also been reported to be associated with QoL in people with ovarian cancer and colorectal cancer, respectively. This study completed a series of secondary analyses using two major data-sets (from 850 men newly diagnosed with prostate cancer, and approximately 550 men from the general Queensland population), in which genetic variants of VEGF and IGF-1 were investigated for associations with prostate cancer susceptibility and QoL. The first aim of this research was to investigate genetic variants in the VEGF and IGF-I gene for an association with the risk of prostate cancer. It was found that one IGF-1 genetic variant (rs35765) had a statistically significant association with prostate cancer (p = 0.04), and one VEGF genetic variant (rs2146323) had a statistically significant association with advanced prostate cancer (p = 0.02). The estimates suggest that carriers of the CA and AA genotype for rs35765 may have a reduced risk of developing prostate cancer (Odds Ratio (OR) = 0.72, 95% Confidence Interval (CI) = 0.55, 0.95, OR = 0.60, 95% CI = 0.26, 1.39, respectively). Meanwhile, carriers of the CA and AA genotype for rs2146323 may be at increased risk of advanced prostate cancer, which was determined by a Gleason score of above 7 (OR = 1.72, 95% CI = 1.12, 2.63, OR = 1.90, 95% CI = 1.08, 3.34, respectively). Utilising the widely used short-form health survey, the SF-36v2, the second aim of this study was to investigate the relationship between prostate cancer and QoL prior to treatment. Assessing QoL at this time-point was important as little research has been conducted to evaluate if prostate cancer affects QoL regardless of treatment. The analyses found that mean SF-36v2 scale scores related to physical health were higher by at least 0.3 Standard Deviations (SD) among men with prostate cancer than the general population comparison group. This difference was considered clinically significant (defined by group differences in mean SF-36v2 scores by at least 0.3 SD). These differences were also statistically significant (p<0.05). Mean QoL scale scores related to mental health were similar between men with prostate cancer and those from the general population comparison group. The third aim of this study was to investigate genetic variants in the VEGF and IGF-1 gene for an association with QoL in prostate cancer patients prior to their treatment. It was essential to evaluate these relationships prior to treatment, before the involvement of these genes was potentially interrupted by treatment. The analyses found that some genetic variants had a small clinically significant association (0.3 SD) to some QoL domains experienced by these men. However, most relationships were not statistically significant (p>0.05). Most of the associations found identified that a small sub-group of men with prostate cancer (approximately 2%) reported, on average, a slightly better QoL than the majority of the prostate cancer patients. The fourth aim of this research was to investigate whether associations between genetic variants in VEGF and IGF-1 and QoL were specific to men with prostate cancer, or were also applicable to the general male population. It was found that twenty out of one-hundred relationships between the genetic variants of VEGF and IGF-1 and QoL health-measures and scales examined differed between these groups. In the majority of the relationships involving VEGF SNPs that differed, a clinically significant difference (0.3 or more SD) between mean scores among the genotype groups in prostate cancer patients was found, while mean scores among men from the general-population comparison group were similar. For example, prostate cancer participants who carried at least one T allele (CT or TT genotype) for rs3024994 had a clinically significant higher (0.3 SD) mean QoL score in terms of the role-physical scale, than participants who carried the CC genotype. This was not seen among men from the general population sample, as the mean score was similar between genotype groups. The opposite was seen in regards to the IGF-1 SNPs examined. Overall, these relationships were not considered to directly impact on the clinical options for men with prostate cancer. As this study utilised secondary data from two separate studies, there are a number of important limitations that should be acknowledged including issues of multiple comparisons, power, and missing or unavailable data. It is recommended that this study be replicated as a better-designed study that takes greater consideration of the many factors involved in prostate cancer and QoL. Investigation into other genetic variants of VEGF or IGF-1 is also warranted, as is consideration of other genes and their relationship with QoL. Through identifying certain genetic variants that have a modest association to prostate cancer, this project adds to the knowledge surrounding VEGF and IGF-1 and their role in prostate cancer susceptibility. Importantly, this project has also introduced the potential role genetics plays in QoL, through investigating the relationships between genetic variants of VEGF and IGF-1 and QoL.