989 resultados para gel matrix


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aliquat 336, a liquid hydrophobic material, was used at different concentrations (0.5-3.0%, w/v) as an additive in the preparation of encapsulated lipase from Bacillus sp. ITP-001 on sol-gel silica matrices using tetraethoxysilane (TEOS) as the precursor. The resulting hydrophobic matrices and immobilized lipases were characterized with regard to specific surface area (BET method), adsorption-desorption isotherms, pore volume (Vp) and size (dp) by nitrogen adsorption (BJH method) and scanning electron microscopy (SEM). The catalytic activities and the corresponding coupling yields were assayed in the hydrolysis of olive oil. In comparison with pure silica matrices, the immobilization process in the presence of Aliquat 336 decreased the values for specific surface area and increased the values for pore specific volume (Vp) and mean pore diameter (dp). This behavior may be related to the partial adsorption of the enzyme on the external surface of the hydrophobic matrix as indicated by scanning electron microscopy. Aliquat 336 concentrations in the range from 0.5 to 1.5% (w/v) provided immobilized derivatives with higher coupling yields and better substrate affinity. The highest coupling yield (Y-A = 71%) was obtained for the immobilized enzyme prepared in the presence of 1.5% Aliquat which gave the following morphological properties: specific surface area = 183 m(2)/g, pore specific volume (Vp) = 0.36 cc/g and mean pore diameter (dp)= 91 angstrom. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scanning electron microscopy (SEM) analysis showed that whole living hyphal of marine fungi Aspergillus sclerotiorum CBMAI 849 and Penicillium citrinum CBMAI 1186 were immobilized on support matrices of silica gel, silica xerogel and/or chitosan. P. citrinum immobilized on chitosan catalyzed the quantitative reduction of 1-(4-methoxyphenyl)-ethanone (1) to the enantiomer (S)-1-(4-methoxyphenyl)-ethanol (3b), with excellent enantioselectivity (ee > 99%, yield = 95%). Interestingly, ketone 1 was reduced with moderate selectivity and conversion to alcohol 3b (ee = 69%, c 40%) by the free mycelium of P. citrinum. This free mycelium of P. citrinum catalyzed the production of the (R)-alcohol 3a, the antipode of the alcohol produced by the immobilized cells. P. citrinum immobilized on chitosan also catalyzed the bioreduction of 2-chloro-1-phenylethanone (2) to 2-chloro-1-phenylethanol (4a,b), but in this case without optical selectivity. These results showed that biocatalytic reduction of ketones by immobilization hyphal of marine fungi depends on the xenobiotic substrate and the support matrix used. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (similar to 47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of fluoride on cell viability and activity of matrix metalloproteinases (MMP) -2 and -9 secreted by preosteoblasts. Preosteoblasts (MC3T3-E1 murine cell line) were cultured in MEM medium supplement with 10% Fetal Bovine Serum (FBS) and nucleosides/ribonucleosides without ascorbic acid. Adherent cells were treated with different concentrations of F (as sodium fluoride-NaF) in medium (5 x 10-6 M, 10-5 M, 10-4 M and 10-3 M) for 24, 48, 72 and 96 h at 37ºC, 5% CO2. Control cells were cultivated in MEM only. After each period, preosteoblast viability was assessed by MTT assay. MMP-2 and -9 activities were performed by gel zymography. Also, alkaline phosphatase (ALP) activity was quantified by colorimetry in all experimental groups. It was shown that cultured cells with the highest dose of F (10-3 M) for 96 h decreased preosteoblast viability while lower doses of F did not alter it, when compared to untreated cells. No differences were observed in ALP activity among groups. Moreover, compared to control, the treatment of cells with F at low dose slightly increased MMP-2 and -9 activities after 24 h. It was concluded that F modulates preosteoblast viability in a dose-dependent manner and also may regulate extracellular matrix remodeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions between follicular epithelial cells and extracellular matrix (ECM) are supposed to play an important role in the development and maintenance of thyroid tissue architecture. In the present study we have therefore investigated the synthesis of ECM components by a feline thyroid cell line which is able to form follicle-like structures in vitro, and also in v-ras-transfected and control-transfected sublines. Transfections were performed by lipofection with pZSR (viral Harvey ras gene; neo) and pSV2-neo (control, neo only) plasmids. We have adapted a semisolid culture system composed exclusively of polymerized alginate and therefore devoid of ECM components. Feline cells embedded in alginate gels as single cells and cultured for up to 90 days formed cell clusters within 10 days. Follicle-like structures were formed in the original cell lines and also in the v-ras- and control-transfected cells. Differences in proliferation rates were observed, the v-ras-transfected cells growing up to two to three times faster than the non-transfected cells. Immunostaining was done using rabbit first antibodies directed against mouse collagen IV, human fibronectin, laminin (tumor Engelbreth-Holm-Swarm laminin), perlecan and other ECM components. For comparison, immunostaining was also performed on cryosections of nodular goiters of six hyperthyroid cats. The cell lines and their transfected clones stained strongly positive for collagen IV and fibronectin, and positively but less strongly for laminin and perlecan. The cat goiter tissue stained positively for collagen IV, laminin, perlecan, and fibronectin, and positive staining for S-laminin (containing the beta2-chain) was seen in blood vessel walls in this tissue. In conclusion, cat cell lines grow three-dimensionally in alginate beads over several weeks, they form follicle-like structures and express the same ECM components as the native cat goiter tissue. Transfection with v-ras does increase proliferation rate, but does not fundamentally alter formation of follicle-like structures and ECM expression. Alginate gel culture is a promising new tool for the study of follicular morphogenesis, polarity, the expression pattern of ECM components and of the interaction between thyrocytes and ECM. It avoids interference caused by gels composed of ECM components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic-inorganic hybrid nanocomposites are widely studied and applied in broad areas because of their ability to combine the flexibility, low density of the organic materials with the hardness, strength, thermal stability, good optical and electronic properties of the inorganic materials. Polydimethylsiloxane (PDMS) due to its excellent elasticity, transparency, and biocompatibility has been extensively employed as the organic host matrix for nanocomposites. For the inorganic component, titanium dioxide and barium titanate are broadly explored as they possess outstanding physical, optical and electronic properties. In our experiment, PDMS-TiO2 and PDMS-BaTiO3 hybrid nanocomposites were fabricated based on in-situ sol-gel technique. By changing the amount of metal precursors, transparent and homogeneous PDMS-TiO2 and PDMS-BaTiO3 hybrid films with various compositions were obtained. Two structural models of these two types of hybrids were stated and verified by the results of characterization. The structures of the hybrid films were examined by a conjunction of FTIR and FTRaman. The morphologies of the cross-sectional areas of the films were characterized by FESEM. An Ellipsometer and an automatic capacitance meter were utilized to evaluate the refractive index and dielectric constant of these composites respectively. A simultaneous DSC/TGA instrument was applied to measure the thermal properties. For PDMS-TiO2 hybrids, the higher the ratio of titanium precursor added, the higher the refractive index and the dielectric constant of the composites are. The highest values achieved of refractive index and dielectric constant were 1.74 and 15.5 respectively for sample PDMS-TiO2 (1-6). However, when the ratio of titanium precursor to PDMS was as high as 20 to 1, phase separation occurred as evidenced by SEM images, refractive index and dielectric constant decreased. For PDMS-BaTiO3 hybrids, with the increase of barium and titanium precursors in the system, the refractive index and dielectric constant of the composites increased. The highest value was attained in sample PDMS-BaTiO3 (1-6) with a refractive index of 1.6 and a dielectric constant of 12.2. However, phase separation appeared in SEM images for sample PDMS-BaTiO3 (1-8), the refractive index and dielectric constant reduced to lower values. Different compositions of PDMS-TiO2 and PDMS-BaTiO3 hybrid films were annealed at 60 °C and 100 °C, the influences on the refractive index, dielectric constant, and thermal properties were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A means of analyzing protein quaternary structure using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI MS) and chemical crosslinking was evaluated. Proteins of known oligomeric structure, as well as monomeric proteins, were analyzed to evaluate the method. The quaternary structure of proteins of unknown or uncertain structure was investigated using this technique. The stoichiometry of recombinant E. coli carbamoyl phosphate synthetase and recombinant human farnesyl protein transferase were determined to be heterodimers using glutaraldehyde crosslinking, agreeing with the stoichiometry found for the wild type proteins. The stoichiometry of the gamma subunit of E. coli DNA polymerase III holoenzyme was determined in solution without the presence of other subunits to be a homotetramer using glutaraldehyde crosslinking and MALDI MS analysis. Chi and psi subunits of E. coli DNA polymerase III subunits appeared to form a heterodimer when crosslinked with heterobifunctional photoreactive crosslinkers.^ Comparison of relative % peak areas obtained from MALDI MS analysis of crosslinked proteins and densitometric scanning of silver stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels showed excellent qualitative agreement for the two techniques, but the quantitative analyses differed, sometimes significantly. This difference in quantitation could be due to SDS-PAGE conditions (differential staining, loss of sample) or to MALDI MS conditions (differences in ionization and/or detection). Investigation of pre-purified crosslinked monomers and dimers recombined in a specific ratio revealed the presence of mass discrimination in the MALDI MS process. The calculation of mass discrimination for two different MALDI time-of-flight instruments showed the loss of a factor of approximately 2.6 in relative peak area as the m/z value doubles over the m/z range from 30,000 to 145,000 daltons.^ Indirect symmetry was determined for tetramers using glutaraldehyde crosslinking with MALDI MS analysis. Mathematical modelling and simple graphing allowed the determination of the symmetry for several tetramers known to possess isologous D2 symmetry. These methods also distinguished tetramers that did not fit D2 symmetry such as apo-avidin. The gamma tetramer of E. coli DNA polymerase III appears to have isologous D2 symmetry. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.