996 resultados para gastrointestinal mucosa protective agent
Resumo:
The stomach is an exceptional organ, which functions are sterilize food ingested, form the primitive bolus, digest lipids and proteins, and to store food temporarily in the gastrointestinal tract. Its capacity of digesting food without digesting itself is amazing. This fact occurs due to innumerous protective substances adjacent to the gastric mucosa. When aggressive factors overwhelm the protective factors, a lesion in the gastric mucosa is formed. Lesions that reach the lamina propria are called gastric ulcers, which are classified macroscopically as openings on the gastric wall and; microscopically, as a gastric injury characterized with epithelial desquamation, mucosal hemorrhage, glandular damage and eosinophilic infiltration. The current therapy available is effective, although it causes collateral effects, therefore researching new drugs is necessary. This work aim to evaluate the gastroprotective effect of epicatechin against gastric lesions induced by absolute ethanol and non steroidal anti-inflammatory drugs which are the main causes of this disease currently, yet we aim to study the main mechanisms of action responsible for the gastroprotective effect. The results show that epicatechin has a significant macroscopic and microscopic gastroprotective effect against gastric injuries induced by ethanol and indomethacin, acting locally by augmenting gastric mucus secretion and it also acts via antioxidant system by holding total glutathione levels. Epicatechin’s gastroprotective mechanisms depend on the activation of sulfhydryl compounds and doesn’t depend on the NO-synthase enzyme
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Inflammatory bowel disease (IBD) is a chronic, relapsing, idiopathic inflammation of the gastrointestinal tract. Clinical studies suggest that the initiation of IBD is multifactorial, involving genetics, the immune system and environmental factors, such as diet, drugs and stress. Pfaffia paniculata is an adaptogenic medicinal plant used in Brazilian folk medicine as an anti-stress agent. Thus, we hypothesised that the P. paniculata enhances the response of animals subjected to colonic inflammation. Our aim was to investigate the intestinal anti-inflammatory activity of P. paniculata in rats before or after induction of intestinal inflammation using trinitrobenzenesulfonic acid (TNBS). The animals were divided into groups that received the vehicle, prednisolone or P. paniculata extract daily starting 14days before or 7days after TNBS induction. At the end of the procedure, the animals were killed and their colons were assessed for the macroscopic damage score (MDS), extent of the lesion (EL) and weight/length ratio, myeloperoxidase (MPO) activity and glutathione (GSH), cytokines and C-reactive protein (CRP) levels. Histological evaluation and ultrastructural analysis of the colonic samples were performed. Treatment with the 200mg/kg dose on the curative schedule was able to reduce the MDS and the EL. In addition, MPO activity was reduced, GSH levels were maintained, and the levels of pro-inflammatory cytokines and CRP were decreased. In conclusion, the protective effect of P. paniculata was related to reduced oxidative stress and CRP colonic levels, and due to immunomodulatory activity as evidenced by reduced levels of IL-1β, INF-γ, TNF-α and IL-6.
Resumo:
Background: Parenteral lipid emulsions (LEs) can influence leukocyte functions. The authors investigated the effect of 2 LEs on leukocyte death in surgical patients with gastrointestinal cancer. Material and Methods: Twenty-five patients from a randomized, double-blind clinical trial (ID: NCT01218841) were randomly included to evaluate leukocyte death after 3 days of preoperative infusion (0.2 g fat/kg/d) of an LE composed equally of medium/long-chain triglycerides and soybean oil (MCTs/LCTs) or pure fish oil (FO). Blood samples were collected before (t0) and after LE infusion (t1) and on the third postoperative day (t2). Results: After LE infusion (t1 vs t0), MCTs/LCTs did not influence cell death; FO slightly increased the proportion of necrotic lymphocytes (5%). At the postoperative period (t2 vs t0), MCTs/LCTs tripled the proportion of apoptotic lymphocytes; FO maintained the slightly increased proportion of necrotic lymphocytes (7%) and reduced the percentage of apoptotic lymphocytes by 74%. In the postoperative period, MCT/LCT emulsion increased the proportion of apoptotic neutrophils, and FO emulsion did not change any parameter of apoptosis in the neutrophil population. There were no differences in lymphocyte or neutrophil death when MCT/LCT and FO treatments were compared during either preoperative or postoperative periods. MCT/LCTs altered the expression of 12 of 108 genes related to cell death, with both pro- and antiapoptotic effects; FO modulated the expression of 7 genes, demonstrating an antiapoptotic effect. Conclusion: In patients with gastrointestinal cancer, preoperative MCT/LCT infusion was associated with postoperative lymphocyte and neutrophil apoptosis. FO has a protective effect on postoperative lymphocyte apoptosis. (JPEN J Parenter Enteral Nutr. 2012; 36: 677-684)
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.
Resumo:
Mycotoxins are contaminants of agricultural products both in the field and during storage and can enter the food chain through contaminated cereals and foods (milk, meat, and eggs) obtained from animals fed mycotoxin contaminated feeds. Mycotoxins are genotoxic carcinogens that cause health and economic problems. Ochratoxin A and fumonisin B1 have been classified by the International Agency for Research on Cancer in 1993, as “possibly carcinogenic to humans” (class 2B). To control mycotoxins induced damages, different strategies have been developed to reduce the growth of mycotoxigenic fungi as well as to decontaminate and/or detoxify mycotoxin contaminated foods and animal feeds. Critical points, target for these strategies, are: prevention of mycotoxin contamination, detoxification of mycotoxins already present in food and feed, inhibition of mycotoxin absorption in the gastrointestinal tract, reduce mycotoxin induced damages when absorption occurs. Decontamination processes, as indicate by FAO, needs the following requisites to reduce toxic and economic impact of mycotoxins: it must destroy, inactivate, or remove mycotoxins; it must not produce or leave toxic and/or carcinogenic/mutagenic residues in the final products or in food products obtained from animals fed decontaminated feed; it must be capable of destroying fungal spores and mycelium in order to avoiding mycotoxin formation under favorable conditions; it should not adversely affect desirable physical and sensory properties of the feedstuff; it has to be technically and economically feasible. One important approach to the prevention of mycotoxicosis in livestock is the addition in the diets of the non-nutritionally adsorbents that bind mycotoxins preventing the absorption in the gastrointestinal tract. Activated carbons, hydrated sodium calcium aluminosilicate (HSCAS), zeolites, bentonites, and certain clays, are the most studied adsorbent and they possess a high affinity for mycotoxins. In recent years, there has been increasing interest on the hypothesis that the absorption in consumed food can be inhibited by microorganisms in the gastrointestinal tract. Numerous investigators showed that some dairy strains of LAB and bifidobacteria were able to bind aflatoxins effectively. There is a strong need for prevention of the mycotoxin-induced damages once the toxin is ingested. Nutritional approaches, such as supplementation of nutrients, food components, or additives with protective effects against mycotoxin toxicity are assuming increasing interest. Since mycotoxins have been known to produce damages by increasing oxidative stress, the protective properties of antioxidant substances have been extensively investigated. Purpose of the present study was to investigate in vitro and in vivo, strategies to counteract mycotoxin threat particularly in swine husbandry. The Ussing chambers technique was applied in the present study that for the first time to investigate in vitro the permeability of OTA and FB1 through rat intestinal mucosa. Results showed that OTA and FB1 were not absorbed from rat small intestine mucosa. Since in vivo absorption of both mycotoxins normally occurs, it is evident that in these experimental conditions Ussing diffusion chambers were not able to assess the intestinal permeability of OTA and FB1. A large number of LAB strains isolated from feces and different gastrointestinal tract regions of pigs and poultry were screened for their ability to remove OTA, FB1, and DON from bacterial medium. Results of this in vitro study showed low efficacy of isolated LAB strains to reduce OTA, FB1, and DON from bacterial medium. An in vivo trial in rats was performed to evaluate the effects of in-feed supplementation of a LAB strain, Pediococcus pentosaceus FBB61, to counteract the toxic effects induced by exposure to OTA contaminated diets. The study allows to conclude that feed supplementation with P. pentosaceus FBB61 ameliorates the oxidative status in liver, and lowers OTA induced oxidative damage in liver and kidney if diet was contaminated by OTA. This P. pentosaceus FBB61 feature joined to its bactericidal activity against Gram positive bacteria and its ability to modulate gut microflora balance in pigs, encourage additional in vivo experiments in order to better understand the potential role of P. pentosaceus FBB61 as probiotic for farm animals and humans. In the present study, in vivo trial on weaned piglets fed FB1 allow to conclude that feeding of 7.32 ppm of FB1 for 6 weeks did not impair growth performance. Deoxynivalenol contamination of feeds was evaluated in an in vivo trial on weaned piglets. The comparison between growth parameters of piglets fed DON contaminated diet and contaminated diet supplemented with the commercial product did not reach the significance level but piglet growth performances were numerically improved when the commercial product was added to DON contaminated diet. Further studies are needed to improve knowledge on mycotoxins intestinal absorption, mechanism for their detoxification in feeds and foods, and nutritional strategies to reduce mycotoxins induced damages in animals and humans. The multifactorial approach acting on each of the various steps could be a promising strategy to counteract mycotoxins damages.
Resumo:
Weaning is an important and complex step involving many stresses that interfere deeply with feed intake, gastro-intestinal tract (GIT) development and adaptation to the weaning diet in young pigs. The health of the pig at weaning, its nutrition in the immediate post-weaning period, and the physical, microbiological and psychological environment are all factors that interact to determine food intake and subsequent growth. GIT disorders, infections and diarrhoea increase at the time of weaning, in fact pathogens such as enterotoxigenic Escherichia coli (ETEC) are major causes of mucosal damage in post-weaning disease contributing to diarrhoea in suckling and post-weaned pigs. The European ban in 2006 put on antibiotic growth promoters (AGP) has stimulated research on the mechanisms of GIT disorders and on nutritional approaches for preventing or reducing such disturbances avoiding AGPs. Concerning these aspects here are presented five studies based on the interplay among nutrition, genomic, immunity and physiology with the aim to clarify some of these problematic issues around weaning period in piglets. The first three evaluate the effects of diets threonine or tryptophan enriched on gut defence and health as possible alternatives to AGP in the gut. The fourth is focused on the possible immunological function related with the development of the stomach. The fifth is a pilot study on the gastric sensing and orexygenic signal given by fasting or re-feeding conditions. Although some results are controversial, it appears that both tryptophan and threonine supplementation in weaning diets have a preventive role in E.coli PWD and favorable effects in the gut especially in relation to ETEC susceptible genotype. While the stomach is believed as almost aseptic organ, it shows an immune activity related with the mucosal maturation. Moreover it shows an orexygenic role of both oxyntic mucosa and pyloric mucosa, and its possible relation with nutrient sensing stimuli.
Resumo:
Ileal lesions in Crohn's disease (CD) patients are colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to adhere to and invade intestinal epithelial cells (IEC), and to survive within macrophages. The interaction of AIEC with IEC depends on bacterial factors mainly type 1 pili, flagella, and outer membrane proteins. In humans, proteases can act as host defence mechanisms to counteract bacterial colonization. The protease meprin, composed of multimeric complexes of the two subunits alpha and beta, is abundantly expressed in IECs. Decreased levels of this protease correlate with the severity of the inflammation in patients with inflammatory bowel disease. The aim of the present study was to analyze the ability of meprin to modulate the interaction of AIEC with IECs. In patients with ileal CD we observed decreased levels of meprins, in particular that of meprin β. Dose-dependent inhibition of the abilities of AIEC strain LF82 to adhere to and invade intestinal epithelial T84 cells was observed when bacteria were pre-treated with both exogenous meprin α and meprin β. Dose-dependent proteolytic degradation of type 1 pili was observed in the presence of active meprins, but not with heat-inactivated meprins, and pretreatment of AIEC bacteria with meprins impaired their ability to bind mannosylated host receptors and led to decreased secretion of the pro-inflammatory cytokine IL-8 by infected T84 cells. Thus, decreased levels of protective meprins as observed in CD patients may contribute to increased AIEC colonization.
Resumo:
Eosinophils play an important role in the mucosal immune system of the gastrointestinal tract under resting and under inflammatory conditions. Under steady-state conditions, the mucosa of the digestive tract is the only organ harboring a substantial number of eosinophils, which, if need be, get activated and exert several effector and immunoregulatory functions. The precise function of these late-phase inflammatory cells is not yet completely understood. Nevertheless, it has recently been demonstrated that lipopolysaccharides from gram-negative bacteria activate eosinophils to rapidly release mitochondrial DNA in the extracellular space. Released mitochondrial DNA and eosinophil granule proteins form extracellular structures able to bind and inactivate bacteria. These findings suggest a novel mechanism of eosinophil-mediated innate immune responses that might be important in maintaining the intestinal barrier function. Moreover, eosinophils also play a crucial role in several inflammatory conditions, such as intestinal infections, immune-mediated inflammations and hypersensitivity reactions. Under chronic inflammatory conditions, the ability of the eosinophils to induce repair can lead to pathological sequelae in the tissue, such as esophageal remodeling in eosinophilic esophagitis. It is established that the uncontrolled eosinophilic inflammation induces fibrosis, esophageal wall thickening and strictures leading to damage that results in a loss of esophageal function. One potential mechanism of this remodeling is so-called 'epithelial mesenchymal transition', which is triggered by eosinophils and is potentially reversible under successful anti-eosinophil treatment. Therefore, eosinophils may act either as friends or as foes, depending on the microenvironment.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) is involved in gastrointestinal tract (GIT) motor functions through binding to specific receptors located in the GIT walls. The objectives of the current study were to compare mRNA levels and binding sites of 5-HT(4) receptors (5-HTR(4)) in smooth muscle layers from the fundus abomasi, pylorus, ileum, cecum, proximal loop of the ascending colon (PLAC), and external loop of the spiral colon (ELSC) of healthy dairy cows, and to verify whether mRNA and protein expression were correlated. Smooth muscle samples were prepared by scraping the mucosa and submucosa from full-thickness intestinal wall samples. The mRNA levels of 5-HTR(4) were measured by real-time PCR and expressed relative to those of the housekeeping gene glyceraldehyde phosphate dehydrogenase. Binding studies were performed using the 5-HTR(4) antagonist [(3)H]GR113808. The mRNA levels of 5-HTR(4) were affected (P < 0.05) by location along the GIT. The mRNA levels of 5-HTR(4) in the ELSC and the ileum were greater than in the PLAC (P = 0.05 and P = 0.07, respectively) but similar to those of all other locations. The competitive binding of [(3)H]GR113808 to suspended membranes from the fundus abomasi, pylorus, cecum, and ELSC was best fit by a 2-site receptor model, whereas it was best fit by a 1-site receptor model in the ileum and PLAC. The mRNA levels and numbers of 5-HTR(4) were not correlated (r = 0.14; P = 0.71). In conclusion, mRNA and binding sites for 5-HTR(4) are present in the smooth muscle layer of the entire GIT of dairy cows and may play a role with respect to motility. The effects of activation of this receptor subtype may be different among GIT locations due to differences in the amount of high- relative to low-affinity binding sites.
Resumo:
OBJECTIVE: The use of vasopressors for treatment of hypotension in sepsis may have adverse effects on microcirculatory blood flow in the gastrointestinal tract. The aim of this study was to measure the effects of three vasopressors, commonly used in clinical practice, on microcirculatory blood flow in multiple abdominal organs in sepsis. DESIGN: Random order, cross-over design. SETTING: University laboratory. SUBJECTS: Eight sedated and mechanically ventilated pigs. INTERVENTIONS: Pigs were exposed to fecal peritonitis-induced septic shock. Mesenteric artery flow was measured using ultrasound transit time flowmetry. Microcirculatory flow was measured in gastric, jejunal, and colon mucosa; jejunal muscularis; and pancreas, liver, and kidney using multiple-channel laser Doppler flowmetry. Each animal received a continuous intravenous infusion of epinephrine, norepinephrine, and phenylephrine in a dose increasing mean arterial pressure by 20%. The animals were allowed to recover for 60 mins after each drug before the next was started. MEASUREMENTS AND MAIN RESULTS: During infusion of epinephrine (0.8 +/- 0.2 mug/kg/hr), mean arterial pressure increased from 66 +/- 5 to 83 +/- 5 mm Hg and cardiac index increased by 43 +/- 9%. Norepinephrine (0.7 +/- 0.3 mug/kg/hr) increased mean arterial pressure from 70 +/- 4 to 87 +/- 5 mm Hg and cardiac index by 41 +/- 8%. Both agents caused a significant reduction in superior mesenteric artery flow (11 +/- 4%, p < .05, and 26 +/- 6%, p < .01, respectively) and in microcirculatory blood flow in the jejunal mucosa (21 +/- 5%, p < .01, and 23 +/- 3%, p < .01, respectively) and in the pancreas (16 +/- 3%, p < .05, and 8 +/- 3%, not significant, respectively). Infusion of phenylephrine (3.1 +/- 1.0 mug/kg/min) increased mean arterial pressure from 69 +/- 5 to 85 +/- 6 mm Hg but had no effects on systemic, regional, or microcirculatory flow except for a 30% increase in jejunal muscularis flow (p < .01). CONCLUSIONS: Administration of the vasopressors phenylephrine, epinephrine, and norepinephrine failed to increase microcirculatory blood flow in most abdominal organs despite increased perfusion pressure and-in the case of epinephrine and norepinephrine-increased systemic blood flow. In fact, norepinephrine and epinephrine appeared to divert blood flow away from the mesenteric circulation and decrease microcirculatory blood flow in the jejunal mucosa and pancreas. Phenylephrine, on the other hand, appeared to increase blood pressure without affecting quantitative blood flow or distribution of blood flow.
Resumo:
BACKGROUND: Vasopressin increases arterial pressure in septic shock even when alpha-adrenergic agonists fail. The authors studied the effects of vasopressin on microcirculatory blood flow in the entire gastrointestinal tract in anesthetized pigs during early septic shock. METHODS: Thirty-two pigs were intravenously anesthetized, mechanically ventilated, and randomly assigned to one of four groups (n=8 in each; full factorial design). Group S (sepsis) and group SV (sepsis-vasopressin) were made septic by fecal peritonitis. Group C and group V were nonseptic control groups. After 300 min, group V and group SV received intravenous infusion of 0.06 U.kg.h vasopressin. In all groups, cardiac index and superior mesenteric artery flow were measured. Microcirculatory blood flow was recorded with laser Doppler flowmetry in both mucosa and muscularis of the stomach, jejunum, and colon. RESULTS: While vasopressin significantly increased arterial pressure in group SV (P<0.05), superior mesenteric artery flow decreased by 51+/-16% (P<0.05). Systemic and mesenteric oxygen delivery and consumption decreased and oxygen extraction increased in the SV group. Effects on the microcirculation were very heterogeneous; flow decreased in the stomach mucosa (by 23+/-10%; P<0.05), in the stomach muscularis (by 48+/-16%; P<0.05), and in the jejunal mucosa (by 27+/-9%; P<0.05), whereas no significant changes were seen in the colon. CONCLUSION: Vasopressin decreased regional flow in the superior mesenteric artery and microcirculatory blood flow in the upper gastrointestinal tract. This reduction in flow and a concomitant increase in the jejunal mucosa-to-arterial carbon dioxide gap suggest compromised mucosal blood flow in the upper gastrointestinal tract in septic pigs receiving low-dose vasopressin.