983 resultados para gap bilinear diffie hellman problem
Resumo:
Cloud computing is a latest new computing paradigm where applications, data and IT services are provided over the Internet. Cloud computing has become a main medium for Software as a Service (SaaS) providers to host their SaaS as it can provide the scalability a SaaS requires. The challenges in the composite SaaS placement process rely on several factors including the large size of the Cloud network, SaaS competing resource requirements, SaaS interactions between its components and SaaS interactions with its data components. However, existing applications’ placement methods in data centres are not concerned with the placement of the component’s data. In addition, a Cloud network is much larger than data center networks that have been discussed in existing studies. This paper proposes a penalty-based genetic algorithm (GA) to the composite SaaS placement problem in the Cloud. We believe this is the first attempt to the SaaS placement with its data in Cloud provider’s servers. Experimental results demonstrate the feasibility and the scalability of the GA.
Resumo:
Web service composition is an important problem in web service based systems. It is about how to build a new value-added web service using existing web services. A web service may have many implementations, all of which have the same functionality, but may have different QoS values. Thus, a significant research problem in web service composition is how to select a web service implementation for each of the web services such that the composite web service gives the best overall performance. This is so-called optimal web service selection problem. There may be mutual constraints between some web service implementations. Sometimes when an implementation is selected for one web service, a particular implementation for another web service must be selected. This is so called dependency constraint. Sometimes when an implementation for one web service is selected, a set of implementations for another web service must be excluded in the web service composition. This is so called conflict constraint. Thus, the optimal web service selection is a typical constrained ombinatorial optimization problem from the computational point of view. This paper proposes a new hybrid genetic algorithm for the optimal web service selection problem. The hybrid genetic algorithm has been implemented and evaluated. The evaluation results have shown that the hybrid genetic algorithm outperforms other two existing genetic algorithms when the number of web services and the number of constraints are large.
Resumo:
This paper demonstrates some interesting connections between the hitherto disparate fields of mobile robot navigation and image-based visual servoing. A planar formulation of the well-known image-based visual servoing method leads to a bearing-only navigation system that requires no explicit localization and directly yields desired velocity. The well known benefits of image-based visual servoing such as robustness apply also to the planar case. Simulation results are presented.
Resumo:
This paper demonstrates some interesting connections between the hitherto disparate fields of mobile robot navigation and image-based visual servoing. A planar formulation of the well-known image-based visual servoing method leads to a bearing-only navigation system that requires no explicit localization and directly yields desired velocity. The well known benefits of image-based visual servoing such as robustness apply also to the planar case. Simulation results are presented.
Resumo:
Objective: The Brief Michigan Alcoholism Screening Test (bMAST) is a 10-item test derived from the 25-item Michigan Alcoholism Screening Test (MAST). It is widely used in the assessment of alcohol dependence. In the absence of previous validation studies, the principal aim of this study was to assess the validity and reliability of the bMAST as a measure of the severity of problem drinking. Method: There were 6,594 patients (4,854 men, 1,740 women) who had been referred for alcohol-use disorders to a hospital alcohol and drug service who voluntarily participated in this study. Results: An exploratory factor analysis defined a two-factor solution, consisting of Perception of Current Drinking and Drinking Consequences factors. Structural equation modeling confirmed that the fit of a nine-item, two-factor model was superior to the original one-factor model. Concurrent validity was assessed through simultaneous administration of the Alcohol Use Disorders Identification Test (AUDIT) and associations with alcohol consumption and clinically assessed features of alcohol dependence. The two-factor bMAST model showed moderate correlations with the AUDIT. The two-factor bMAST and AUDIT were similarly associated with quantity of alcohol consumption and clinically assessed dependence severity features. No differences were observed between the existing weighted scoring system and the proposed simple scoring system. Conclusions: In this study, both the existing bMAST total score and the two-factor model identified were as effective as the AUDIT in assessing problem drinking severity. There are additional advantages of employing the two-factor bMAST in the assessment and treatment planning of patients seeking treatment for alcohol-use disorders. (J. Stud. Alcohol Drugs 68: 771-779,2007)
Resumo:
Product placement is a fast growing multi-billion dollar industry yet measures of its effectiveness, which influence the critical area of pricing, have been problematic. Past attempts to measure the effect of a placement, and therefore provide a basis for pricing of placements, have been confounded by the effect on consumers of multiple prior exposures of a brand name in all marketing communications. Virtual product placement offers certain advantages: as a tool to measure the effectiveness of product placements; assistance with the problem of lack of audience selectivity in traditional product placement; testing different audiences for brands and addressing a gap in the existing academic literature by focusing on the impact of product placement on recall and recognition of new brands.
Resumo:
Cloud computing has become a main medium for Software as a Service (SaaS) hosting as it can provide the scalability a SaaS requires. One of the challenges in hosting the SaaS is the placement process where the placement has to consider SaaS interactions between its components and SaaS interactions with its data components. A previous research has tackled this problem using a classical genetic algorithm (GA) approach. This paper proposes a cooperative coevolutionary algorithm (CCEA) approach. The CCEA has been implemented and evaluated and the result has shown that the CCEA has produced higher quality solutions compared to the GA.
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.