910 resultados para forecasts
Resumo:
Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al(2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models(according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combi nation of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to Decem ber 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.
Resumo:
In this work, an electricity price forecasting model is developed. The performance of the proposed approach is improved by considering renewable energies (wind power and hydro generation) as explanatory variables. Additionally, the resulting forecasts are obtained as an optimal combination of a set of several univariate and multivariate time series models. The large computational experiment carried out using out-of-sample forecasts for every hour and day allows withdrawing statistically sound conclusions
Resumo:
Las terminales de contenedores son sistemas complejos en los que un elevado número de actores económicos interactúan para ofrecer servicios de alta calidad bajo una estricta planificación y objetivos económicos. Las conocidas como "terminales de nueva generación" están diseñadas para prestar servicio a los mega-buques, que requieren tasas de productividad que alcanzan los 300 movimientos/ hora. Estas terminales han de satisfacer altos estándares dado que la competitividad entre terminales es elevada. Asegurar la fiabilidad de las planificaciones del atraque es clave para atraer clientes, así como reducir al mínimo el tiempo que el buque permanece en el puerto. La planificación de las operaciones es más compleja que antaño, y las tolerancias para posibles errores, menores. En este contexto, las interrupciones operativas deben reducirse al mínimo. Las principales causas de dichas perturbaciones operacionales, y por lo tanto de incertidumbre, se identifican y caracterizan en esta investigación. Existen una serie de factores que al interactuar con la infraestructura y/o las operaciones desencadenan modos de fallo o parada operativa. Los primeros pueden derivar no solo en retrasos en el servicio sino que además puede tener efectos colaterales sobre la reputación de la terminal, o incluso gasto de tiempo de gestión, todo lo cual supone un impacto para la terminal. En el futuro inmediato, la monitorización de las variables operativas presenta gran potencial de cara a mejorar cualitativamente la gestión de las operaciones y los modelos de planificación de las terminales, cuyo nivel de automatización va en aumento. La combinación del criterio experto con instrumentos que proporcionen datos a corto y largo plazo es fundamental para el desarrollo de herramientas que ayuden en la toma de decisiones, ya que de este modo estarán adaptadas a las auténticas condiciones climáticas y operativas que existen en cada emplazamiento. Para el corto plazo se propone una metodología con la que obtener predicciones de parámetros operativos en terminales de contenedores. Adicionalmente se ha desarrollado un caso de estudio en el que se aplica el modelo propuesto para obtener predicciones de la productividad del buque. Este trabajo se ha basado íntegramente en datos proporcionados por una terminal semi-automatizada española. Por otro lado, se analiza cómo gestionar, evaluar y mitigar el efecto de las interrupciones operativas a largo plazo a través de la evaluación del riesgo, una forma interesante de evaluar el effecto que eventos inciertos pero probables pueden generar sobre la productividad a largo plazo de la terminal. Además se propone una definición de riesgo operativo junto con una discusión de los términos que representan con mayor fidelidad la naturaleza de las actividades y finalmente, se proporcionan directrices para gestionar los resultados obtenidos. Container terminals are complex systems where a large number of factors and stakeholders interact to provide high-quality services under rigid planning schedules and economic objectives. The socalled next generation terminals are conceived to serve the new mega-vessels, which are demanding productivity rates up to 300 moves/hour. These terminals need to satisfy high standards because competition among terminals is fierce. Ensuring reliability in berth scheduling is key to attract clients, as well as to reduce at a minimum the time that vessels stay the port. Because of the aforementioned, operations planning is becoming more complex, and the tolerances for errors are smaller. In this context, operational disturbances must be reduced at a minimum. The main sources of operational disruptions and thus, of uncertainty, are identified and characterized in this study. External drivers interact with the infrastructure and/or the activities resulting in failure or stoppage modes. The later may derive not only in operational delays but in collateral and reputation damage or loss of time (especially management times), all what implies an impact for the terminal. In the near future, the monitoring of operational variables has great potential to make a qualitative improvement in the operations management and planning models of terminals that use increasing levels of automation. The combination of expert criteria with instruments that provide short- and long-run data is fundamental for the development of tools to guide decision-making, since they will be adapted to the real climatic and operational conditions that exist on site. For the short-term a method to obtain operational parameter forecasts in container terminals. To this end, a case study is presented, in which forecasts of vessel performance are obtained. This research has been entirely been based on data gathered from a semi-automated container terminal from Spain. In the other hand it is analyzed how to manage, evaluate and mitigate disruptions in the long-term by means of the risk assessment, an interesting approach to evaluate the effect of uncertain but likely events on the long-term throughput of the terminal. In addition, a definition for operational risk evaluation in port facilities is proposed along with a discussion of the terms that better represent the nature of the activities involved and finally, guidelines to manage the results obtained are provided.
Resumo:
We use residual-delay maps of observational field data for barometric pressure to demonstrate the structure of latitudinal gradients in nonlinearity in the atmosphere. Nonlinearity is weak and largely lacking in tropical and subtropical sites and increases rapidly into the temperate regions where the time series also appear to be much noisier. The degree of nonlinearity closely follows the meridional variation of midlatitude storm track frequency. We extract the specific functional form of this nonlinearity, a V shape in the lagged residuals that appears to be a basic feature of midlatitude synoptic weather systems associated with frontal passages. We present evidence that this form arises from the relative time scales of high-pressure versus low-pressure events. Finally, we show that this nonlinear feature is weaker in a well regarded numerical forecast model (European Centre for Medium-Range Forecasts) because small-scale temporal and spatial variation is smoothed out in the grided inputs. This is significant, in that it allows us to demonstrate how application of statistical corrections based on the residual-delay map may provide marked increases in local forecast accuracy, especially for severe weather systems.