974 resultados para flow-mediated dilation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Quinolones are widely used, broad spectrum antibiotics that can induce immediate- and delayed-type hypersensitivity reactions, presumably either IgE or T cell mediated, in about 2-3% of treated patients. OBJECTIVE: To better understand how T cells interact with quinolones, we analysed six patients with delayed hypersensitivity reactions to ciprofloxacin (CPFX), norfloxacin (NRFX) or moxifloxacin (MXFX). METHODS: We confirmed the involvement of T cells in vivo by patch test and in vitro by means of the lymphocyte proliferation test (LTT). The nature of the drug-T cell interaction as well as the cross-reactivity with other quinolones were investigated through the generation and analysis (flow cytometry and proliferation assays) of quinolone-specific T cell clones (TCC). RESULTS: The LTT confirmed the involvement of T cells because peripheral blood mononuclear cells (PBMC) mounted an enhanced in vitro proliferative response to CPFX and/or NRFX or MXFX in all patients. Patch tests were positive after 24 and 48 h in three out of the six patients. From two patients, CPFX- and MXFX-specific CD4(+)/CD8(+) T cell receptor (TCR) alphabeta(+) TCC were generated to investigate the nature of the drug-T cell interaction as well as the cross-reactivity with other quinolones. The use of eight different quinolones as antigens (Ag) revealed three patterns of cross-reactivity: clones exclusively reacting with the eliciting drug, clones with a limited cross-reactivity and clones showing a broad cross-reactivity. The TCC recognized quinolones directly without need of processing and without covalent association with the major histocompatability complex (MHC)-peptide complex, as glutaraldehyde-fixed Ag-presenting cells (APC) could present the drug and washing quinolone-pulsed APC removed the drug, abrogating the reactivity of quinolone-specific TCC. CONCLUSION: Our data show that T cells are involved in delayed immune reactions to quinolones and that cross-reactivity among the different quinolones is frequent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using an infant rat model of pneumococcal meningitis, we determined whether endothelins contribute to neuronal damage in this disease. Cerebrospinal fluid analysis demonstrated a significant increase of endothelin-1 in infected animals compared with uninfected controls. Histopathological examination 24 hours after infection showed brain damage in animals treated with ceftriaxone alone (median, 9.2% of cortex; range, 0-49.1%). In infected animals treated intraperitoneally with the endothelin antagonist bosentan (30 mg/kg, every 12 hours) also, injury was reduced to 0.5% (range, 0-8.6%) of cortex. Cerebral blood flow was reduced in infected animals (6.5 +/- 4.0 ml/min/100 g of brain vs 14.9 +/- 9.1 ml/min/100 g in controls. Treatment with bosentan restored cerebral blood flow to levels similar to controls (12.8 +/- 5.3 ml/min/100 g). Improved blood flow was not mediated by nitric oxide production, because bosentan had no effect on cerebrospinal fluid or plasma nitrite/nitrate concentrations at 6, 12, or 18 hours. These data indicate that endothelins contribute to neuronal injury in this model of pneumococcal meningitis by causing cerebral ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystic fibrosis (CF) lung disease is characterized by infection with Pseudomonas aeruginosa and a sustained accumulation of neutrophils. In this study, we analyzed 1) the expression of MyD88-dependent TLRs on circulating and airway neutrophils in P. aeruginosa-infected CF patients, P. aeruginosa-infected non-CF bronchiectasis patients, and noninfected healthy control subjects and 2) studied the regulation of TLR expression and functionality on neutrophils in vitro. TLR2, TLR4, TLR5, and TLR9 expression was increased on airway neutrophils compared with circulating neutrophils in CF and bronchiectasis patients. On airway neutrophils, TLR5 was the only TLR that was significantly higher expressed in CF patients compared with bronchiectasis patients and healthy controls. Studies using confocal microscopy and flow cytometry revealed that TLR5 was stored intracellularly in neutrophils and was mobilized to the cell surface in a protein synthesis-independent manner through protein kinase C activation or after stimulation with TLR ligands and cytokines characteristic of the CF airway microenvironment. The most potent stimulator of TLR5 expression was the bacterial lipoprotein Pam(3)CSK(4). Ab-blocking experiments revealed that the effect of Pam(3)CSK(4) was mediated through cooperation of TLR1 and TLR2 signaling. TLR5 activation enhanced the phagocytic capacity and the respiratory burst activity of neutrophils, which was mediated, at least partially, via a stimulation of IL-8 production and CXCR1 signaling. This study demonstrates a novel mechanism of TLR regulation in neutrophils and suggests a critical role for TLR5 in neutrophil-P. aeruginosa interactions in CF lung disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Little is known about the vasomotor function of human coronary collateral vessels. The purpose of this study was to examine collateral flow under a strong sympathetic stimulus (cold pressor test, CPT). METHODS In 30 patients (62 +/- 12 years) with coronary artery disease, two subsequent coronary artery occlusions were performed with random CPT during one of them. Two minutes before and during the 1 minute-occlusion, the patient's hand was immerged in ice water. For the calculation of a perfusion pressure-independent collateral flow index (CFI), the aortic (Pao), the central venous (CVP) and the coronary wedge pressure (Poccl) were measured: CFI = (Poccl - CVP)/(Pao - CVP). RESULTS CPT lead to an increase in Pao from 98 +/- 14 to 105 +/- 15 mm Hg (p = 0.002). Without and with CPT, CFI increased during occlusion from 14% +/- 10% to 16% +/- 10% (p = 0.03) and from 17% +/- 9% to 19% +/- 9% (p = 0.006), respectively, relative to normal flow. During CPT, CFI was significantly higher at the beginning as well as at the end of the occlusion compared to identical instants without CPT. CFI at the end of the control occlusion did not differ significantly from the CFI at the beginning of occlusion with CPT. CONCLUSIONS During balloon occlusion, collateral flow increased due to collateral recruitment independent of external sympathetic stimulation. Sympathetic stimulation using CPT additionally augmented collateral flow. The collateral-flow-increasing effect of CPT is comparable to the recruitment effect of the occlusion itself. This may reflect a coronary collateral vasodilation mediated by the sympathetic nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Previous research has focused on the positive consequences of flow, an intrinsically rewarding state of deep absorption. In contrast, the present research links flow to impaired risk awareness and to risky behaviour. We expected flow to enhance self-efficacy beliefs, which in turn were hypothesised to result in low risk awareness and risky behaviour in sports. In addition, we predicted that individuals' level of experience in the activity would moderate the expected effects. Methods: One study with kayakers (Study 1) and two studies with rock climbers (Studies 2 and 3) were conducted. Kayakers completed a survey while still on the river; climbers responded during and upon completion of a climb. Results: In all studies flow was related to risk awareness. Study 2 additionally showed its association with risky behaviour. Studies 2 and 3 revealed that these relationships were mediated by self-efficacy. The mediations were moderated by level of experience (Study 3). Conclusions: The results indicated that inexperienced but not experienced participants respond to self-efficacy beliefs evoked by flow with impaired risk awareness and with risky behaviour. Theoretical implications for flow and risk research as well as practical implications for risk prevention are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Allopurinol is a main cause of severe cutaneous adverse reactions (SCAR). How allopurinol induces hypersensitivity remains unknown. Pre-disposing factors are the presence of the HLA-B*58:01 allele, renal failure and possibly the dose taken. OBJECTIVE Using an in vitro model, we sought to decipher the relationship among allopurinol metabolism, HLA-B*58:01 phenotype and drug concentrations in stimulating drug-specific T cells. METHODS Lymphocyte transformation test (LTT) results of patients who had developed allopurinol hypersensitivity were analysed. We generated allopurinol or oxypurinol-specific T cell lines (ALP/OXP-TCLs) from allopurinol naïve HLA-B*58:01(+) and HLA-B*58:01(-) individuals using various drug concentrations. Their reactivity patterns were analysed by flow cytometry and (51) Cr release assay. RESULTS Allopurinol allergic patients are primarily sensitized to oxypurinol in a dose-dependent manner. TCL induction data show that both the presence of HLA-B*58:01 allele and high concentration of drug are important for the generation of drug-specific T cells. The predominance of oxypurinol-specific lymphocyte response in allopurinol allergic patients can be explained by the rapid conversion of allopurinol to oxypurinol in vivo rather than to its intrinsic immunogenicity. OXP-TCLs do not recognize allopurinol and vice versa. Finally, functional avidity of ALP/OXP-TCL is dependent on both the induction dose and HLA-B*58:01 status. CONCLUSIONS AND CLINICAL RELEVANCE This study establishes the important synergistic role of drug concentration and HLA-B*58:01 allele in the allopurinol or oxypurinol-specific T cell responses. Despite the prevailing dogma that Type B adverse drug reactions are dose independent, allopurinol hypersensitivity is primarily driven by oxypurinol-specific T cell response in a dose-dependent manner, particular in the presence of HLA-B*58:01 allele.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delineating the mechanism(s) of BDNF/TrkB mediated proliferation in Neuroblastoma Timothy Christopher Graham, B.S. Supervisory Professor: Patrick Zweidler-McKay, MD/PhD Neuroblastoma is the most common extra-cranial solid tumor in children, arising from neural crest precursor cells. The neurotrophin receptors (TrkA/B/C) have been implicated as important prognostic markers, linking the biology of the tumor to patient outcome. High expression of TrkA and TrkC receptors have been linked to favorable biological features and high patient survival, while TrkB is expressed in unfavorable, aggressive tumors. Several studies suggest that high levels and activation of TrkB by its ligand brain-derived neurotrophic factor (BDNF) stimulates tumor cell survival, proliferation, and chemoresistance. However, little is known about the molecular mechanisms that regulate proliferation. The TrkB signaling pathway in neuroblastoma cells has been difficult to evaluate due to the loss of TrkB expression when the cells are used in vitro. Here we determined the role of proximal signaling pathways downstream of TrkB on neuroblastoma proliferation. By analyzing a panel of neuroblastoma cell lines, we found that the SMS-KCN cells express detectable levels of protein and mRNA levels of TrkB as analyzed by western, RT-PCR, and surface expression by flow cytometry. By the addition of exogenous human recombinant BDNF, we showed that activation of TrkB is important in the proliferation of the cells and can be repressed by inhibiting TrkB kinase function. By BDNF stimulation and use of specific kinase inhibitors, the common pathways involving PLCg, PI3K/AKT, and MAPK were initially investigated in addition to PI3K/MTOR and FYN pathways. We demonstrate for the first time that Fyn plays a critical role in TrkB mediated proliferation in neuroblastoma. Constitutively active and over-expressed Fyn reduced neuroblastoma proliferation, as measured by PCNA expression. Knockdown of Fyn by shRNA was shown to cooperate with activated TrkB for an enhanced proliferative response. Although TrkB activation has been implicated in the proliferation of neuroblastoma cells, little is known about its effects on cell cycle regulation. Protein levels of pRB, CDK2, CDK4, CDC25A, cyclin D1, and cyclin E were analyzed following BDNF stimulation. We found that BDNF mediated activation of TrkB induces multiple common proximal signaling pathways including the anti-proliferative Fyn pathway and drives cell cycle machinery to enhance the proliferation of neuroblastoma cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyspecific IgG given intravenously at high doses (IVIG) is used for immunomodulatory therapy in autoimmune diseases such as idiopathic thrombocytopenic purpura and myasthenia gravis. It is assumed that the clinical effect is brought about in part by a modulation of mononuclear phagocyte function, in particular by an inhibition of Fc receptor (FcR) mediated phagocytosis. In the present study, the effect of IVIG on FcR-mediated phagocytosis by monocytes was analysed in vitro. Since monocytes exposed to minute amounts of surface-bound IgG displayed impaired phagocytosis of IgG-coated erythrocytes (EA), the effect of IVIG was studied with mononuclear cells suspended in teflon bags in medium containing 10% autologous serum and IVIG (2-10 mg/ml). Monocytes pre-exposed to IVIG and then washed, displayed impaired ingestion of EA when compared with control cells cultured in 10% autologous serum only. The decrease in phagocytosis was observed with sheep erythrocytes treated with either rabbit IgG or bovine IgG1 and with anti-D-treated human erythrocytes. This suggests that phagocytosis via both FcR type I (FcRI) and type II (FcRII) was decreased. The impairment of phagocytosis was dependent on the presence of intact IgG and was mediated by IVIG from nulliparous donors and from multigravidae to the same extent, suggesting that alloantibodies contained in IVIG have a minor role in modulating FcR-mediated phagocytosis by monocytes. A flow cytometric analysis using anti-FcRI, FcRII and FcRII monoclonal antibodies showed that IVIG treatment upregulated FcRI expression but did not significantly alter the expression of FcRII and FcRIII.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In acute neuroinflammatory states such as meningitis, neutrophils cross the blood-brain barrier (BBB) and contribute to pathological alterations of cerebral function. The mechanisms that govern neutrophil migration across the BBB are ill defined. Using live-cell imaging, we show that LPS-stimulated BBB endothelium supports neutrophil arrest, crawling, and diapedesis under physiological flow in vitro. Investigating the interactions of neutrophils from wild-type, CD11a(-/-), CD11b(-/-), and CD18(null) mice with wild-type, junctional adhesion molecule-A(-/-), ICAM-1(null), ICAM-2(-/-), or ICAM-1(null)/ICAM-2(-/-) primary mouse brain microvascular endothelial cells, we demonstrate that neutrophil arrest, polarization, and crawling required G-protein-coupled receptor-dependent activation of β2 integrins and binding to endothelial ICAM-1. LFA-1 was the prevailing ligand for endothelial ICAM-1 in mediating neutrophil shear resistant arrest, whereas Mac-1 was dominant over LFA-1 in mediating neutrophil polarization on the BBB in vitro. Neutrophil crawling was mediated by endothelial ICAM-1 and ICAM-2 and neutrophil LFA-1 and Mac-1. In the absence of crawling, few neutrophils maintained adhesive interactions with the BBB endothelium by remaining either stationary on endothelial junctions or displaying transient adhesive interactions characterized by a fast displacement on the endothelium along the direction of flow. Diapedesis of stationary neutrophils was unchanged by the lack of endothelial ICAM-1 and ICAM-2 and occurred exclusively via the paracellular pathway. Crawling neutrophils, although preferentially crossing the BBB through the endothelial junctions, could additionally breach the BBB via the transcellular route. Thus, β2 integrin-mediated neutrophil crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed BBB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute vascular rejection (AVR), in particular microvascular thrombosis, is an important barrier to successful pig-to-primate xenotransplantation. Here, we report the generation of pigs with decreased tissue factor (TF) levels induced by small interfering (si)RNA-mediated gene silencing. Porcine fibroblasts were transfected with TF-targeting small hairpin (sh)RNA and used for somatic cell nuclear transfer. Offspring were analyzed for siRNA, TF mRNA and TF protein level. Functionality of TF downregulation was investigated by a whole blood clotting test and a flow chamber assay. TF siRNA was expressed in all twelve liveborn piglets. TF mRNA expression was reduced by 94.1 ± 4.7% in TF knockdown (TFkd) fibroblasts compared to wild-type (WT). TF protein expression in PAEC stimulated with 50 ng/mL TNF-α was significantly lower in TFkd pigs (mean fluorescence intensity TFkd: 7136 ± 136 vs. WT: 13 038 ± 1672). TF downregulation significantly increased clotting time (TFkd: 73.3 ± 8.8 min, WT: 45.8 ± 7.7 min, p < 0.0001) and significantly decreased thrombus formation compared to WT (mean thrombus coverage per viewing field in %; WT: 23.5 ± 13.0, TFkd: 2.6 ± 3.7, p < 0.0001). Our data show that a functional knockdown of TF is compatible with normal development and survival of pigs. TF knockdown could be a valuable component in the generation of multi-transgenic pigs for xenotransplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TVA, the cellular receptor for subgroup A avian leukosis viruses (ALV-A) can mediate viral entry when expressed as a transmembrane protein or as a glycosylphosphatidylinositol-linked protein on the surfaces of transfected mammalian cells. To determine whether mammalian cells can be rendered susceptible to ALV-A infection by attaching a soluble form of TVA to their plasma membranes, the TVA-epidermal growth factor (EGF) fusion protein was generated. TVA-EGF is comprised of the extracellular domain of TVA linked to the mature form of human EGF. Flow cytometric analysis confirmed that TVA-EGF is a bifunctional reagent capable of binding simultaneously to cell surface EGF receptors and to an ALV-A surface envelope-Ig fusion protein. TVA-EGF prebound to transfected mouse fibroblasts expressing either wild-type or kinase-deficient human EGF receptors, rendered these cells highly susceptible to infection by ALV-A vectors. Viral infection was blocked specifically in the presence of a recombinant human EGF protein, demonstrating that the binding of TVA-EGF to EGF receptors was essential for infectivity. These studies have demonstrated that a soluble TVA-ligand fusion protein can mediate viral infection when attached to specific cell surfaces, suggesting an approach for targeting retroviral infection to specific cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory signals. Rolling under the hydrodynamic drag forces of blood flow is mediated by the interaction between selectins and their ligands across the leukocyte and endothelial cell surfaces. Here we present force-spectroscopy experiments on single complexes of P-selectin and P-selectin glycoprotein ligand-1 by atomic force microscopy to determine the intrinsic molecular properties of this dynamic adhesion process. By modeling intermolecular and intramolecular forces as well as the adhesion probability in atomic force microscopy experiments we gain information on rupture forces, elasticity, and kinetics of the P-selectin/P-selectin glycoprotein ligand-1 interaction. The complexes are able to withstand forces up to 165 pN and show a chain-like elasticity with a molecular spring constant of 5.3 pN nm−1 and a persistence length of 0.35 nm. The dissociation constant (off-rate) varies over three orders of magnitude from 0.02 s−1 under zero force up to 15 s−1 under external applied forces. Rupture force and lifetime of the complexes are not constant, but directly depend on the applied force per unit time, which is a product of the intrinsic molecular elasticity and the external pulling velocity. The high strength of binding combined with force-dependent rate constants and high molecular elasticity are tailored to support physiological leukocyte rolling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superoxide-mediated clastogenesis is characteristic for various chronic inflammatory diseases with autoimmune reactions and probably plays a role in radiation-induced clastogenesis and in the congenital breakage syndromes. It is consistently prevented by exogenous superoxide dismutase (SOD), but not by heat-inactivated SOD, indicating that the anticlastogenic effect is related to the catalytic function of the enzyme. Increased superoxide production by activated monocytes/macrophages is followed by release of more long-lived metabolites, so-called clastogenic factors, which contain lipid peroxidation products, unusual nucleotides of inosine, and cytokines such as tumor necrosis factor α. Since these components are not only clastogenic, but can stimulate further superoxide production by monocytes and neutrophils, the genotoxic effects are self-sustaining. It is shown here that anticlastogenic effects of exogenous SOD are preserved despite extensive washing of the cells and removal of all extracellular SOD. Using flow cytometry and confocal laser microscopy, rapid adherence of the fluorescently labeled enzyme to the cell surface could be observed with slow uptake into the cell during the following hours. The degree of labeling was concentration and time dependent. It was most important for monocytes, compared with lymphocytes, neutrophils, and fibroblasts. The cytochrome c assay showed significantly diminished O2− production by monocytes, pretreated with SOD and washed thereafter. The preferential and rapid binding of SOD to monocytes may be of importance not only for the superoxide-mediated genotoxic effects, described above, but also from a therapeutic standpoint. It can explain the observation that beneficial effects of injected SOD lasted for weeks and months despite rapid clearance of the enzyme from the blood stream according to pharmacodynamic studies.