977 resultados para flow cytometry
Resumo:
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis, In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2, The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells, Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in decoy receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cell.
Resumo:
To examine the source of smooth muscle-like cells during vascular healing, C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) nucleated bone marrow cells from congenic (Ly 5.1) male donors. Successful repopulation (88.4 +/- 4.9%) by donor marrow was demonstrated in the female mice by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody after 4 weeks. The arteries of the female mice were then subjected to two types of insult: (1) The iliac artery was scratch-injured by 5 passes of a probe causing severe medial damage. After 4 weeks, the arterial lumen was obliterated by a cell-rich neointima, with cells containing a smooth muscle actin present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y-chromosome-specific probe. (2) In an organized arterial thrombus formed by inserting an 8-0 silk suture into the left common carotid artery, donor cells staining with alpha smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage, Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
The origin of smooth muscle cells involved in vascular healing was examined. Eighteen C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) bone nucleated marrow cells from congenic (Ly 5.1) male donors. Successful repopulation by donor marrow was demonstrated after 4 weeks by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody. The iliac artery of six of the chimeric mice was scratch-injured by five passes of a probe, causing severe medial damage. After 4 weeks the arterial lumen was obliterated by a cell-rich neointima, with alpha-smooth muscle actin-containing cells present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y chromosome-specific probe. An organized arterial thrombus was formed in the remaining 12 chimeric mice by inserting an 8.0 silk suture into the left common carotid artery. Donor cells staining with alpha-smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage. Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair.
Resumo:
We have shown previously that melanoma cells in culture release heavy-chain ferritin (H-Ferritin) into supernatants and that this is responsible for the suppression of responses of peripheral blood lymphocytes stimulated by anti-CD3. These effects were mediated by activation of regulatory T cells to produce interleukin (IL)-10. In the present study, we examined whether a similar relation might exist between levels of H-Ferritin and activation of regulatory T cells in patients with melanoma. Ferritin levels were evaluated by ELISA and regulatory T-cell numbers were assessed by three-color flow cytometry to identify CD4(+) CD25(+) CD69(-) T cells. CD69 positive cells were excluded to avoid inclusion of normal activated CD4, CD25 expressing T cells. Measurements of H- and light-chain (L)-Ferritin by ELISA revealed that H- but not L-Ferritin was elevated in the circulation of melanoma patients. In addition, these studies revealed a marked increase in the number of CD4+ CD25+ CD69- T cells in such patients, compared with age-matched controls. The ratio of H-Ferritin:L-Ferritin correlated with the levels of regulatory T cells consistent with a causal relation between unbound H-Ferritin levels and the activation of regulatory T cells. H-Ferritin or regulatory T cells did not, however, correlate with the stage of the melanoma. These results provide evidence for the importance of H-Ferritin in the induction of regulatory T cells in patients with melanoma and provide additional insight into the suppression of immune responses in such patients.
Resumo:
Although lacking catalytic activity, the Lys49-PLA(2)s damage artificial membranes by a Ca2+-independent mechanism, and demonstrate a potent bactericidal effect. The relationship between the membrane-damaging activity and bactericidal effect of bothropstoxin-I (BthTx-1), a Lys49-PLA(2) from the venom of Bothrops jararacussu, was evaluated for the wildtype protein and a series of site-directed mutants in the active site and C-terminal regions of the protein. The membrane permeabilization effect against the inner and outer membranes of Escherichia coli K12 was evaluated by fluorescence changes of Sytox Green and N-phenyl-N-naphthylamine, respectively. With the exception of H48Q, all mutants reduced the bactericidal activity, which correlated with a reduction of the permeabilization effect both against the inner bacterial membrane. No significant differences in the permeabilization of the bacterial outer membrane were observed between the native, wild-type recombinant and mutant proteins. These results suggest different permeabilization mechanisms against the inner and outer bacterial membranes. Furthermore, the structural determinants of bacterial inner membrane damage identified in this study correlate with those previously observed for artificial membrane permeabilization, suggesting that a common mechanism of membrane damage underlies the two effects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE- To determine whether obesity increases platelet reactivity and thrombin activity in patients with type 2 diabetes plus stable coronary artery disease. RESEARCH DESIGN AND METHODS- We assessed platelet reactivity and markers of thrombin generation and activity in 193 patients from nine clinical sites of the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D). Blood taken at the time of enrollment was used for assay of the concentration of prothrombin fragment 1.2 (PT1.2, released when prothrombin is activated) and fibrinopeptide A (FPA, released when fibrinogen is cleaved). Platelet activation was identified with the use of flow cytometry in response to 0, 0.2, and 1 mu mol/l adenosine diphosphate (ADP). RESULTS- Concentrations of FPA, PT1.2, and platelet activation in the absence of agonist were low. Greater BMI was associated with higher platelet reactivity in response to 1 mu m ADP as assessed by surface expression of P-selectin (r = 0.29, P < 0.0001) but not reflected by the binding of fibrinogen to activated glycoprotein IIb-IIIa. BMI was not associated with concentrations of FPA or PT1.2. Platelet reactivity correlated negatively with A1C (P < 0.04), was not related to the concentration Of triglycerides in blood, and did not correlate with the concentration of C-reactive peptide. CONCLUSIONS- Among patients enrolled in this substudy of BARI 2D, a greater BMI was associated with higher platelet reactivity at the time of enrollment. Our results suggest that obesity and insulin resistance that accompanies obesity may influence platelet reactivity in patients with type 2 diabetes.
Resumo:
Background Obesity is related to a higher rate of infections and some types of cancer. Here we analyzed the impact of obesity and weight loss induced by Roux-en-Y gastric bypass (RYGB) on immunological parameters, i.e., cytokine productions and natural killer cell function. Methods We analyzed 28 morbidly obese patients before and 6 months after RYGB. Biochemical parameters were analyzed in plasma. The percent of natural killer (NK) cells, their cytotoxicity, and the production of cytokines by peripheral blood mononuclear cells were analyzed. The percent of NK cells was determined by flow cytometry and cytokine production determined by enzyme-linked immunosorbent assay. NK cytotoxicity was determined by the lactate dehydrogenase release assay. Results The weight loss 6 months following surgery was 35.3 +/- 4.5 kg. RYGB also improves biochemical parameters. No significant difference was found in the percent of NK cells after surgery. We found an increase in the production of interferon-gamma, interleukin (IL)-12 and IL-18, but not in IL-2, 6 months after RYGB. Cytotoxic activity of NK cells was significantly enhanced 6 months after RYGB [17.1 +/- 14.7% before RYGB vs 51.8 +/- 11.3% at 6 months after, at 40: 1 effector to target cell ratio; p<0.001]. We observed significant post-surgical improvement in the cytotoxic activity curve in 22 out of 28 patients (78.6%), irrespective of the target to effector cell ratio. Conclusions The weight loss induced by RYGB modifies the production of cytokines related with NK cell function and improves its activity.
Resumo:
Stem cells (SC) are potential therapeutic tools in the treatment of chronic renal diseases. Number and engraftment of SC in the injured sites are important for possible differentiation into renal cells and paracrine effect. The aim of this study was to analyze the effect of subcapsular injection of mesenchymal stem cells (MSC) in the 5/6 nephrectomy model (5/6 Nx). MSC obtained from Wistar rats were isolated by their capacity to adhere to plastic surfaces, characterized by flow cytometry, and analyzed by their differentiation potential into osteoblasts. MSC (2 X 105) were injected into the subcapsule of the remnant kidney of male Wistar rats, and were followed for 15 or 30 days. 5/6 Nx rats showed significant hypertension at 15 and 30 days, which was reduced by MSC at 30 days. Increased albuminuria and serum creatinine at 15 and 30 days in 5/6 Nx rats were also reduced by subcapsular injection of MSC. We also observed a significant reduction of glomerulosclerosis index 30 days after injection of MSC. 4-6 diamidino-2-phenylindole dihydrochloride (DAPI)-stained MSC showed a migration of these cells into renal parenchyma 5, 15, and 30 days after subcapsular injection. In conclusion, our data demonstrated that subcapsular injection of MSC in 5/6 Nx rats is associated with renoprotective effects. These results suggest that locally implanted MSC in the kidney allow a large number of cells to migrate into the injured sites and demonstrate that subcapsular injection represent an effective route for MSC delivery.
Resumo:
P>Human immunodeficiency virus (HIV)-1 protease is a known target of CD8+ T cell responses, but it is the only HIV-1 protein in which no fully characterized HIV-1 protease CD4 epitopes have been identified to date. We investigated the recognition of HIV-1 protease by CD4+ T cells from 75 HIV-1-infected, protease inhibitor (PI)-treated patients, using the 5,6-carboxyfluorescein diacetate succinimidyl ester-based proliferation assay. In order to identify putative promiscuous CD4+ T cell epitopes, we used the TEPITOPE algorithm to scan the sequence of the HXB2 HIV-1 protease. Protease regions 4-23, 45-64 and 73-95 were identified; 32 sequence variants of the mentioned regions, encoding frequent PI-induced mutations and polymorphisms, were also tested. On average, each peptide bound to five of 15 tested common human leucocyte antigen D-related (HLA-DR) molecules. More than 80% of the patients displayed CD4+ as well as CD8+ T cell recognition of at least one of the protease peptides. All 35 peptides were recognized. The response was not associated with particular HLA-DR or -DQ alleles. Our results thus indicate that protease is a frequent target of CD4+ along with CD8+ proliferative T cell responses by the majority of HIV-1-infected patients under PI therapy. The frequent finding of matching CD4+ and CD8+ T cell responses to the same peptides may indicate that CD4+ T cells provide cognate T cell help for the maintenance of long-living protease-specific functional CD8+ T cells.
Resumo:
Sepsis induces a systemic inflammatory response leading to tissue damage and cell death. LPS tolerance affects inflammatory response. To comprehend potential new mechanisms of immune regulation in endotoxemia, we examined macrophage mRNA expression by macroarray affected by LPS tolerance. LPS tolerance was induced with subcutaneous administration of 1 mg/kg/day of LPS over 5 days. Macrophages were isolated from the spleen and the expression of 1200 genes was quantitatively analyzed by the macroarray technique. The tolerant group displayed relevant changes in the expression of 84 mRNA when compared to naive mice. A functional group of genes related to cell death regulation was identified. PARP-1, caspase 3, FASL and TRAIL genes were confirmed by RT-PCR to present lower expression in tolerant mice. In addition, reduced expression of the pro-inflammatory genes TNF-alpha and IFN-gamma in the tolerant group was demonstrated. Following this, animals were challenged with polymicrobial sepsis. Flow cytometry analysis showed reduced necrosis and apoptosis in macrophages from the tolerant group compared to the naive group. Finally, a survival study showed a significant reduction in mortality in the tolerant group. Thus, in the current study we provide evidence for the selective reprogramming of the gene expression of cell death pathways during LPS tolerance and link these changes to protection from cell death and enhanced survival rates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Two humanized monoclonal antibody constructs bearing the same variable regions of an anti-CD3 monoclonal antibody, whole IgG and FvFc, were expressed in CHO cells. Random and site-specific integration were used resulting in similar expression levels. The transfectants were selected with appropriate selection agent, and the surviving cells were plated in semi-solid medium for capture with FITC-conjugated anti-human IG antibody and picked with the robotic ClonePix FL. Conditioned media from selected clones were purified by affinity chromatography and characterized by SDS-PAGE, Western-blot, SEC-HPLC, and isoelectric focusing. Binding to the target present in healthy human mononuclear cells was assessed by flow cytometry, as well as by competition between the two constructs and the original murine monoclonal antibody. The humanized constructs were not able to dislodge the murine antibody while the murine anti-CD3 antibody could dislodge around 20% of the FvFc or IgG humanized versions. Further in vitro and in vivo pre-clinical analyses will be carried out to verify the ability of the humanized versions to demonstrate the immunoregulatory profile required for a humanized anti-CD3 monoclonal antibody.
Resumo:
Introduction: Pulmonary arterial hypertension (PAH) is frequently associated with thrombotic events, particularly involving the pulmonary microcirculation at sites of vascular injury. We therefore decided to analyse protease-activated receptor 1 (PAR1), a key element in the activation of human platelets by thrombin, in PAH patients in stable clinical condition. Methods: Using flow cytometry, we analyzed platelet PAR1 density, PAR1-mediated exposure of P-selectin and the formation of platelet-leukocyte aggregates in 30 PAH patients aged 11 to 78 years (median 50.5 years). The control group consisted of 25 healthy subjects with the same age range as patients. Results: In patients, total platelet PAR1 density and uncleaved PAR1 density correlated negatively with platelet count (r(2) = 0.33 and r(2) = 0.34 respectively, p < 0.0015). In patients with a low platelet count (<150 x 10(9) platelets/L), both densities were increased relative to controls (82% and 33% respectively, p < 0.05). Thrombin peptide-induced platelet exposure of P-selectin was directly related to total and uncleaved PAR1 density (respectively, r(2) = 0.33 and r(2) = 0.29, p < 0.0025) and increased in subjects with low platelet count (46% versus those with normal platelet count, p < 0.05). Patients with low platelet count had decreased in vitro thrombin-induced formation of platelet-leukocyte aggregates (57% decrease versus controls, p < 0.05). Conclusions: There seems to be a subpopulation of PAH patients with increased propensity to thrombotic events as suggested by increased platelet PAR1 expression and PAR-mediated surface exposure of P-selectin associated with decreased platelet count. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.
Resumo:
alpha(5)beta(1) integrin from both wild-type CHO cells (CHO-K1) and deficient in proteoglycan biosynthesis (CHO-745) is post-translationally modified by glycosaminoglycan chains. We demonstrated this using [(35)S]sulfate metabolic labeling of the cells, enzymatic degradation, immunoprecipitation reaction with monoclonal antibody, fluorescence microscopy, and flow cytometry. The alpha(5)beta(1) integrin heterodimer is a hybrid proteoglycan containing both chondroitin and heparan sulfate chains. Xyloside inhibition of sulfate incorporation into alpha(5)beta(1) integrin also supports that integrin is a proteoglycan. Also. cells grown with xyloside adhered on fibronectin with no alteration in alpha(5)beta(1) integrin expression. However, haptotactic motility on fibronectin declined in cells grown with xyloside or chlorate as compared with controls. Thus, alpha(5)beta(1) integrin is a proteoglycan and the glycosaminoglycan chains of the integrin influence cell motility on fibronectin. Similar glycosylation of alpha(5)beta(1) integrin was observed in other normal and malignant cells, suggesting that this modification is conserved and important in the function of this integrin. Therefore, these glycosaminoglycan chains of alpha(5)beta(1) integrin are involved in cellular migration on fibronectin.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.