975 resultados para fixed-time AI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The "MARECHIARA-phytoplankton" dataset contains phytoplankton data collected in the ongoing time-series at Stn MC ( 40°48.5' N, 14°15' E) in the Gulf of Naples. This dataset spans over the period 1984-2006 and contains data of phytoplankton species composition and abundance. Phytoplankton sampling was regularly conducted from January 1984 till July 1991 and in 1995-2006. Sampling was interrupted from August 1991 till January 1995. The sampling frequency was fortnightly till 1991 and weekly since 1995. Phytoplankton samples were collected at 0.5 m depth using Niskin bottles and immediately fixed with formaldehyde (0.8-1.6% final concentration) for species identification and counts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A review of existing studies about LCA of PV systems has been carried out. The data from this review have been completed with our own figures in order to calculate the Energy Payback Time of double and horizontal axis tracking and fixed systems. The results of this metric span from 2 to 5 years for the latitude and global irradiation ranges of the geographical area comprised between −10◦ to 10◦ of longitude, and 30◦ to 45◦ of latitude. With the caution due to the uncertainty of the sources of information, these results mean that a GCPVS is able to produce back the energy required for its existence from 6 to 15 times during a life cycle of 30 years. When comparing tracking and fixed systems, the great importance of the PV generator makes advisable to dedicate more energy to some components of the system in order to increase the productivity and to obtain a higher performance of the component with the highest energy requirement. Both double axis and horizontal axis trackers follow this way, requiring more energy in metallic structure, foundations and wiring, but this higher contribution is widely compensated by the improved productivity of the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A restricted maximum likelihood analysis applied to an animal model showed no significant differences (P > 0.05) in pH value of the longissimus dorsi measured at 24 h post-mortem (pH24) between high and low lines of Large White pigs selected over 4 years for post-weaning growth rate on restricted feeding. Genetic and phenotypic correlations between pH24 and production and carcass traits were estimated using all performance testing records combined with the pH24 measurements (5.05–7.02) on slaughtered animals. The estimate of heritability for pH24 was moderate (0.29 ± 0.18). Genetic correlations between pH24 and production or carcass composition traits, except for ultrasonic backfat (UBF), were not significantly different from zero. UBF had a moderate, positive genetic correlation with pH24 (0.24 ± 0.33). These estimates of genetic correlations affirmed that selection for increased growth rate on restricted feeding is likely to result in limited changes in pH24 and pork quality since the selection does not put a high emphasis on reduced fatness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Developers strive to create innovative Artificial Intelligence (AI) behaviour in their games as a key selling point. Machine Learning is an area of AI that looks at how applications and agents can be programmed to learn their own behaviour without the need to manually design and implement each aspect of it. Machine learning methods have been utilised infrequently within games and are usually trained to learn offline before the game is released to the players. In order to investigate new ways AI could be applied innovatively to games it is wise to explore how machine learning methods could be utilised in real-time as the game is played, so as to allow AI agents to learn directly from the player or their environment. Two machine learning methods were implemented into a simple 2D Fighter test game to allow the agents to fully showcase their learned behaviour as the game is played. The methods chosen were: Q-Learning and an NGram based system. It was found that N-Grams and QLearning could significantly benefit game developers as they facilitate fast, realistic learning at run-time.