888 resultados para fire ant
Resumo:
Aim The aim of this study was to determine the number of successful establishments of the invasive Argentine ant outside native range and to see whether introduced supercolonies have resulted from single or multiple introductions. We also compared the genetic diversity of native versus introduced supercolonies to assess the size of the propagules (i.e. the number of founding individuals) at the origin of the introduced supercolonies. Location Global. Methods We used mitochondrial DNA (mtDNA) markers and microsatellite loci to study 39 supercolonies of the Argentine ant Linepithema humile covering both the native (n = 25) and introduced range (n = 14). Results Data from three mitochondrial genes and 13 nuclear microsatellites suggest that the introduced supercolonies studied originated from at least seven founding events out of the native area in Argentina (primary introductions). The distribution of mtDNA haplotypes also suggests that supercolonies in the introduced range each derive from a single source supercolony and that one of these source supercolonies has been particularly successful, being the basis of many introduced populations spread across the world. Comparison of the genetic diversity of supercolonies based on the five most diverse loci also revealed that native and introduced supercolonies have greatly overlapping ranges of diversity, although the genetic diversity is on average less in introduced than in native supercolonies. Main conclusions Both primary introductions (from the native range) and secondary introductions (from sites with established invasive supercolonies) were important in the global expansion of the Argentine ant. In combination with the similar social organization of colonies in the native and introduced range, this indicates that invasiveness did not evolve recently as a unique and historically contingent event (e.g. reduction of genetic diversity) in this species. Rather, native L. humile supercolonies have characteristics that make them pre-adapted to invade new - and in particular disturbed - habitats when given the opportunity. These results have important implications with regard to possible strategies to be used to control invasive ants.
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.
Mechanisms of reproductive isolation between an ant species of hybrid origin and one of its parents.
Resumo:
The establishment of new species by hybridization is difficult because it requires the development of reproductive isolation (RI) in sympatry to escape the homogenizing effects of gene flow from the parental species. Here we investigated the role of two pre- and two postzygotic mechanisms of RI in a system comprising two interdependent Pogonomyrmex harvester ant lineages (the H1 and H2 lineages) of hybrid origin and one of their parental species (P. rugosus). Similar to most other ants, P. rugosus is characterized by an environmental system of caste determination with female brood developing either into queens or workers depending on nongenetic factors. By contrast, there is a strong genetic component to caste determination in the H1 and H2 lineages because the developmental fate of female brood depends on the genetic origin of the parents, with interlineage eggs developing into workers and intralineage eggs developing into queens. The study of a mixed mating aggregation revealed strong differences in mating flight timing between P. rugosus and the two lineages as a first mechanism of RI. A second important prezygotic mechanism was assortative mating. Laboratory experiments also provided support for one of the two investigated mechanisms of postzygotic isolation. The majority of offspring produced from the few matings between P. rugosus and the lineages aborted at the egg stage. This hybrid inviability was under maternal influence, with hybrids produced by P. rugosus queens being always inviable whereas a small proportion of H2 lineage queens produced large numbers of adult hybrid offspring. Finally, we found no evidence that genetic caste determination acted as a second postzygotic mechanism reducing gene flow between P. rugosus and the H lineages. The few viable P. rugosus-H hybrids were not preferentially shunted into functionally sterile workers but developed into both workers and queens. Overall, these results reveal that the nearly complete (99.5%) RI between P. rugosus and the two hybrid lineages stems from the combination of two typical prezygotic mechanisms (mating time divergence and assortative mating) and one postzygotic mechanism (hybrid inviability).
Resumo:
Practice Note 3 Escape bed lifts
Resumo:
Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating 'rafts' to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting.
Non-nest mate discrimination and clonal colony structure in the parthenogenetic ant Cerapachys biroi
Resumo:
Understanding the interplay between cooperation and conflict in social groups is a major goal of biology. One important factor is genetic relatedness, and animal societies are usually composed of related but genetically different individuals, setting the stage for conflicts over reproductive allocation. Recently, however, it has been found that several ant species reproduce predominantly asexually. Although this can potentially give rise to clonal societies, in the few well-studied cases, colonies are often chimeric assemblies of different genotypes, due to worker drifting or colony fusion. In the ant Cerapachys biroi, queens are absent and all individuals reproduce via thelytokous parthenogenesis, making this species an ideal study system of asexual reproduction and its consequences for social dynamics. Here, we show that colonies in our study population on Okinawa, Japan, recognize and effectively discriminate against foreign workers, especially those from unrelated asexual lineages. In accord with this finding, colonies never contained more than a single asexual lineage and average pairwise genetic relatedness within colonies was extremely high (r = 0.99). This implies that the scope for social conflict in C. biroi is limited, with unusually high potential for cooperation and altruism.
Resumo:
Northern Ireland Fire Brigade - 10th and 11th March 2005
Resumo:
Northern Ireland's Fire and Rescue Service - Consultation
Resumo:
Quinquennial Review of the Fire Authority of Northern Ireland Stage II Report
Resumo:
The greenhead ant Rhytidoponera metallica has long been recognized as posing a potential challenge to kin selection theory because it has large queenless colonies where apparently many of the morphological workers are mated and reproducing. However this species has never been studied genetically and important elements of its breeding system and kin structure remain uncertain. We used microsatellite markers to measure the relatedness among nestmates unravel the fine-scale population genetic structure and infer the breeding system of R. metallica. The genetic relatedness among worker nestmates is very low but significantly greater than zero (r = 0.082 +/- 0.015) which demonstrates that nests contain many distantly related breeders. The inbreeding coefficient is very close to and not significantly different from zero indicating random mating and lack of microgeographic genetic differentiation. On average. closely located nests are not more similar genetically than distant nests which is surprising as new colonies form by budding and female dispersal is restricted. Lack of inbreeding and absence of population viscosity indicates high gene flow mediated by males. Overall the genetic pattern detected in R. metallica suggests that a high number of moderately related workers mate with unrelated males from distant nests. This breeding system results in the lowest relatedness among nestmates reported for social insect species where breeders and helpers are not morphologically differentiated. [References: 69]
Resumo:
Understanding social evolution requires us to understand the processes regulating the number of breeders within social groups and how they partition reproduction. Queens in polygynous (multiple queens per colony) ants often seek adoption in established colonies instead of founding a new colony independently. This mode of dispersal leads to potential conflicts, as kin selection theory predicts that resident workers should favour nestmate queens over foreign queens. Here we compared the survival of foreign and resident queens as well as their relative reproductive share. We used the ant Formica exsecta to construct colonies consisting of one queen with workers related to this resident queen and introduced a foreign queen. We found that the survival of foreign queens did not differ from that of resident queens over a period of 136 days. However, the genetic analyses revealed that resident queens produced a 1.5-fold higher number of offspring than introduced queens, and had an equal or higher share in 80% of the colonies. These data indicate that some discrimination can occur against dispersing individuals and that dispersal can thus have costs in terms of direct reproduction for dispersing queens.
Resumo:
Paratrechina longicornis (Latreille) has been recorded for the first time in Switzerland in the Kloten airpot in Zürich. This species originates from the tropics and has been introduced into many parts of the world. In Europe, it was only mentionned from France and the British Isle.