969 resultados para finite-dimensional quantum systems
Resumo:
Pós-graduação em Física - IFT
Resumo:
In this work, we propose the nonlocal tunneling mechanism for high-fidelity state transfer between distant parties. The nonlocal tunneling follows from the overlap between the distant sending and receiving wave functions, which is indirectlymediated by the off-resonant normal modes of a quantum channel. This channel is made up of a network of dissipative quantum systems exhibiting the same bosonic or fermionic statistical nature as the sender and receiver. We demonstrate that the incoherence arising from quantum channel nonidealities is almost completely circumvented by the tunneling mechanism, which thus affords a high-fidelity transfer process.
Resumo:
Griffiths proposed a pair of boundary conditions that define a point interaction in one dimensional quantum mechanics. The conditions involve the nth derivative of the wave function where n is a non-negative integer. We re-examine the interaction so defined and explicitly confirm that it is self-adjoint for any even value of n and for n = 1. The interaction is not self-adjoint for odd n > 1. We then propose a similar but different pair of boundary conditions with the nth derivative of the wave function such that the ensuing point interaction is self-adjoint for any value of n.
Resumo:
In the past decades, all of the efforts at quantifying systems complexity with a general tool has usually relied on using Shannon's classical information framework to address the disorder of the system through the Boltzmann-Gibbs-Shannon entropy, or one of its extensions. However, in recent years, there were some attempts to tackle the quantification of algorithmic complexities in quantum systems based on the Kolmogorov algorithmic complexity, obtaining some discrepant results against the classical approach. Therefore, an approach to the complexity measure is proposed here, using the quantum information formalism, taking advantage of the generality of the classical-based complexities, and being capable of expressing these systems' complexity on other framework than its algorithmic counterparts. To do so, the Shiner-Davison-Landsberg (SDL) complexity framework is considered jointly with linear entropy for the density operators representing the analyzed systems formalism along with the tangle for the entanglement measure. The proposed measure is then applied in a family of maximally entangled mixed state.
Resumo:
It is a well-established fact that statistical properties of energy-level spectra are the most efficient tool to characterize nonintegrable quantum systems. The statistical behavior of different systems such as complex atoms, atomic nuclei, two-dimensional Hamiltonians, quantum billiards, and noninteracting many bosons has been studied. The study of statistical properties and spectral fluctuations in interacting many-boson systems has developed interest in this direction. We are especially interested in weakly interacting trapped bosons in the context of Bose-Einstein condensation (BEC) as the energy spectrum shows a transition from a collective nature to a single-particle nature with an increase in the number of levels. However this has received less attention as it is believed that the system may exhibit Poisson-like fluctuations due to the existence of an external harmonic trap. Here we compute numerically the energy levels of the zero-temperature many-boson systems which are weakly interacting through the van der Waals potential and are confined in the three-dimensional harmonic potential. We study the nearest-neighbor spacing distribution and the spectral rigidity by unfolding the spectrum. It is found that an increase in the number of energy levels for repulsive BEC induces a transition from a Wigner-like form displaying level repulsion to the Poisson distribution for P(s). It does not follow the Gaussian orthogonal ensemble prediction. For repulsive interaction, the lower levels are correlated and manifest level-repulsion. For intermediate levels P(s) shows mixed statistics, which clearly signifies the existence of two energy scales: external trap and interatomic interaction, whereas for very high levels the trapping potential dominates, generating a Poisson distribution. Comparison with mean-field results for lower levels are also presented. For attractive BEC near the critical point we observe the Shnirelman-like peak near s = 0, which signifies the presence of a large number of quasidegenerate states.
Resumo:
In this thesis, three different types of quantum rings arestudied. These are quantum rings with diamagnetic,paramagnetic or spontaneous persistent currents. It turns out that the main observable to characterizequantum rings is the Drude weight. Playing a key role inthis thesis, it will be used to distinguish betweendiamagnetic (positive Drude weight) and paramagnetic(negative Drude weight) ring currents. In most models, theDrude weight is positive. Especially in the thermodynamiclimit, it is positive semi-definite. In certain modelshowever, intuitivelysurprising, a negative Drude weight is found. This rareeffect occurs, e.g., in one-dimensional models with adegenerate ground state in conjunction with the possibilityof Umklapp scattering. One aim of this thesis is to examineone-dimensional quantum rings for the occurrence of anegative Drude weight. It is found, that the sign of theDrude weight can also be negative, if the band structurelacks particle-hole symmetry. The second aim of this thesis is the modeling of quantumrings intrinsically showing a spontaneous persistentcurrent. The construction of the model starts from theextended Hubbard model on a ring threaded by anAharonov-Bohm flux. A feedback term through which thecurrent in the ring can generate magnetic flux is added.Another extension of the Hamiltonian describes the energystored in the internally generated field. This model isevaluated using exact diagonalization and an iterativescheme to find the minima of the free energy. The quantumrings must satisfy two conditions to exhibit a spontaneousorbital magnetic moment: a negative Drude weight and aninductivity above the critical level. The magneticproperties of cyclic conjugated hydrocarbons likebenzene due to electron delocalization [magnetic anisotropy,magnetic susceptibility exaltation, nucleus-independent chemical shift (NICS)]---that have become important criteriafor aromaticity---can be examined using this model. Corrections to the presented calculations are discussed. Themost substantial simplification made in this thesis is theneglect of the Zeeman interaction of the electron spins withthe magnetic field. If a single flux tube threads a quantumring, the Zeeman interaction is zero, but in mostexperiments, this situation is difficult to realize. In themore realistic situation of a homogeneous field, the Zeemaninteraction has to be included, if the electrons have atotal spin component in the direction of the magnetic field,or if the magnetic field is strong.
Resumo:
In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.
Resumo:
Stabile Radikale haben in vielen Bereichen der Chemie, Physik, Biologie und Biomedizin ihren Nutzen unter Beweis gestellt. Gerade im letzten Jahrzehnt erlebte diese Substanzklasse vor allem wegen den Anwendungsmöglichkeiten von Nitroxiden als Red-Ox-Sensoren oder magnetischen Materialen ein erneutes Interesse. Das erste Kapitel beschäftigt sich mit der grundlegenden Theorie zur Entwicklung magnetischer Materialien. Des Weiteren sollen anhand einiger Beispiele Radikale im Komplex mit paragmagnetischen Metallen, Biradikale und Polyradikale beschrieben werden. rnrnIm zweiten Kapitel soll auf die Synthese von Hybrid Fluorophore-Nitrononyl-Nitroxid und Iminonitroxidradiale, sowie ihre Charakterisierung über IR, CV, EPR und Röntgenstrukturanalyse eingegangen werden. Mittels UV/Vis-Spektroskopie soll hierbei eine mögliche Anwendung als Red-Ox-Sensoren festgestellt werden. Hierbei werden über anschließende PL Untersuchungen eben diese Sensoreigenschaften der dargestellten Radikale bestätigt werden. Vielmehr noch soll die Möglichkeit von Pyren-Pyrazol-Nitronyl-Nitroxid als NO-Nachweis erläutert werden.rnrnFortschritte sowohl im Design als auch in der Analyse von magnetischen Materialen auf der Basis von Nitroxiden ist Thema des dritten Kapitels. Über ein klassisches Ullmann-Protokoll wurden verschiedene Nitronyl-Nitroxid und Iminonitroxid Biradiale mit unterschiedlichen π-Brücken zwischen den Radikalzentren synthetisiert. Magnetische Messungen belegen einen relativ starken antiferromagnetischen intramolekularen Austausch für den Großteil der untersuchten Biradikale. Hierbei zeigte sich jedoch eine außergewöhnliche hohe Austausch-Kupplung für 3,3‘-Diazatolandiradikale, die nur über die Existenz von starken intermolekularen Wechselwirkungen beschrieben werden kann. Durch Kombination der Röntgenstrukturanalyse mit DFT Berechnungen konnte im Fall des Tolan verbrückten Diradikals 87c die Intra-Dimer-Kupplung auf Jintra = -8,6 K bestimmt werden. Ein direkter Beweis für eine intermolekulare Anlagerung von Jinter ~- 2K konnte über eine Tieftemperatur AC-Messung von 87c erhalten werden. Bezüglich der magnetischen Messung ist das Nitronyl Biradikal 87c ein vielversprechender Kandidat für einen rein organischen eindimensionalen Quantenmagnet.rnrnAbsicht dieser Untersuchungen ist es zu zeigen, dass über die Kombination verschiedener struktureller Elemente die Sensitivität von Nitroxid basierten Sensoren und die intramolekulare Austauschwechselwirkung in π-konjugierten Spinsystemen so eingestellt werden kann, dass es möglich ist Moleküle mit gezielten Sensor- oder Magneteigenschaften zu entwickeln. rn
Resumo:
Als ein vielversprechendes Konzept zur Erhöhung der thermoelektrischen Effizienz wird seit Anfang der 90er Jahre die Nutzung niederdimensionaler Systeme angesehen. Aus theoretischen Arbeiten von Hicks und Dresselhaus folgt, dass in ein- und zweidimensionalen Systemen eine Erhöhung der thermoelektrischen Effizienz möglich ist, die einen Durchbruch für die Anwendung thermoelektrischer Wandler zur Folge haben könnte. Die Realisierung solcher niederdimensionaler Systeme ist in geeigneten Mehrlagenstrukturen und durch Verwendung von Halbleiterverbindungen mit unterschiedlicher Energiebandlücke möglich. Ziel des Verbundprojektes Nitherma war es Mehrfachschichtsysteme mit 2-dimensionalem Transportverhalten aus thermoelektrischen Materialien (Pb1-xSrxTe, Bi2(SexTe1-x)3) herzustellen und auf die erwartete hohe thermoelektrische Effizienz zu untersuchen. Diese wurde messtechnischrndurch die Bestimmung der elektrischen Leitfähigkeit, des Seebeck-Koeffizienten und der Wärmeleitfähigkeit parallel zu den Schichtebenen (in-plane-Transporteigenschaft) ermittelt. Ziel dieser Arbeit war einerseits die Verbesserung der Präparations- und Messtechnik bei der Untersuchung der Wärmeleitfähigkeit von Schichten und Schichtsystemen sowie die Demonstration der Reproduzierbarkeit, andererseits die Interpretation der an niederdimensionalen Strukturen ermittelten Transportmessungen. Um den Einfluß der Niederdimensionalität auf die Wärmeleitfähigkeit zu ermitteln, wurden umfangreiche Messungen an unterschiedlich dimensionierten Übergitter- und Multi-Quantum-Well-Strukturen (MQW-Strukturen) durchgeführt. Die Verifizierung der von den Projektpartnern durchgeführten Transportmessungen wurde durch die Messung des Seebeck-Koeffizienten unterstützt.Neben der Charakterisierung durch Transportmessungen erfolgte die Bestimmung der thermoelektrischen Effizienz.
Resumo:
La quantum biology (QB) è un campo di ricerca emergente che cerca di affronta- re fenomeni quantistici non triviali all’interno dei contesti biologici dotandosi di dati sperimentali di esplorazioni teoriche e tecniche numeriche. I sistemi biologici sono per definizione sistemi aperti, caldi,umidi e rumorosi, e queste condizioni sono per loro imprenscindibili; si pensa sia un sistema soggetto ad una veloce decoerenza che sopprime ogni dinamica quantistica controllata. La QB, tramite i principi di noise assisted transport e di antenna fononica sostiene che la presenza di un adeguato livello di rumore ambientale aumenti l’efficienza di un network di trasporto,inoltre se all’interno dello spettro ambientale vi sono specifici modi vibrazionali persistenti si hanno effetti di risonanza che rigenerano la coerenza quantistica. L’interazione ambiente-sistema è di tipo non Markoviano,non perturbativo e di forte non equi- librio, ed il rumore non è trattato come tradizionale rumore bianco. La tecnica numerica che per prima ha predetto la rigenerazione della coerenza all’interno di questi network proteici è stato il TEBD, Time Evolving Block Decimation, uno schema numerico che permette di simulare sistemi 1-D a molti corpi, caratterizzati da interazioni di primi vicini e leggermente entangled. Tramite gli algoritmi numerici di Orthopol l’hamiltoniana spin-bosone viene proiettata su una catena discreta 1-D, tenendo conto degli effetti di interazione ambiente-sistema contenuti nello spettro(il quale determina la dinamica del sistema).Infine si esegue l’evoluzione dello stato.
Resumo:
The in-medium physics of heavy quarkonium is an ideal proving ground for our ability to connect knowledge about the fundamental laws of physics to phenomenological predictions. One possible route to take is to attempt a description of heavy quark bound states at finite temperature through a Schrödinger equation with an instantaneous potential. Here we review recent progress in devising a comprehensive approach to define such a potential from first principles QCD and extract its, in general complex, values from non-perturbative lattice QCD simulations. Based on the theory of open quantum systems we will show how to interpret the role of the imaginary part in terms of spatial decoherence by introducing the concept of a stochastic potential. Shortcomings as well as possible paths for improvement are discussed.
Resumo:
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.
Resumo:
La posibilidad de utilizar sistemas cuánticos para procesar y transmitir información ha impulsado la aparición de tecnologías de información cuántica, p. ej., distribución cuántica de claves. Aunque prometedoras, su uso fuera del laboratorio es actualmente demasiado costoso y complicado. En este trabajo mostramos como utilizarlas en redes ópticas de telecomunicaciones. Al utilizar una infraestructura existente y pervasiva, y compartirla con otras señales, tanto clásicas como cuánticas, el coste se reduce drásticamente y llega a un mayor público. Comenzamos integrando señales cuánticas en los tipos más utilizados de redes ópticas pasivas, por su simplicidad y alcance a usuarios finales. Luego ampliamos este estudio, proponiendo un diseño de red óptica metropolitana basado en la división en longitud de onda para multiplexar y direccionar las señales. Verificamos su funcionamiento con un prototipo. Posteriormente, estudiamos la distribución de pares de fotones entrelazados entre los usuarios de dicha red con el objetivo de abarcar más tecnologías. Para ampliar la capacidad de usuarios, rediseñamos la red troncal, cambiando tanto la topología como la tecnología utilizada en los nodos. El resultado es una red metropolitana cuántica que escala a cualquier cantidad de usuarios, a costa de una mayor complejidad y coste. Finalmente, tratamos el problema de la limitación en distancia. La solución propuesta está basada en codificación de red y permite, mediante el uso de varios caminos y nodos, modular la cantidad de información que tiene cada nodo, y así, la confianza depositada en él. ABSTRACT The potential use of quantum systems to process and transmit information has impulsed the emergence of quantum information technologies such as quantum key distribution. Despite looking promising, their use out of the laboratory is limited since they are a very delicate technology due to the need of working at the single quantum level. In this work we show how to use them in optical telecommunication networks. Using an existing infrastructure and sharing it with other signals, both quantum and conventional, reduces dramatically the cost and allows to reach a large group of users. In this work, we will first integrate quantum signals in the most common passive optical networks, for their simplicity and reach to final users. Then, we extend this study by proposing a quantum metropolitan optical network based on wavelength-division multiplexing and wavelengthaddressing, verifying its operation mode in a testbed. Later, we study the distribution of entangled photon-pairs between the users of the network with the objective of covering as much different technologies as possible. We further explore other network architectures, changing the topology and the technology used at the nodes. The resulting network scales better at the cost of a more complex and expensive infrastructure. Finally, we tackle the distance limitation problem of quantum communications. The solution offered is based on networkcoding and allows, using multiple paths and nodes, to modulate the information leaked to each node, and thus, the degree of trust placed in them.
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require threedimensional coupled vehicle-bridge models, wheree consideration of wheel to rail contact is a key aspect. Furthermore, an adequate evaluation of safety of rail traffic requires nonlinear models. A nonlinear coupled model is proposed here for vehicle-structure vertical and lateral dynamics. Vehicles are considered as fully three-dimensional multibody systems including gyroscopic terms and large rotation effects. The bridge structure is modeled by means of finite elements which may be of beam, shell or continuum type and may include geometric or material nonlinearities. The track geometry includes distributed track alignment irregularities. Both subsystems (bridge and vehicles) are described with coordinates in absolute reference frames, as opposed to alternative approaches which describe the multibody system with coordinates relative to the base bridge motion. The wheelrail contact employed is a semi-Hertzian model based on realistic wheel-rail profiles. It allows a detailed geometrical description of the contact patch under each wheel including multiple-point contact, flange contact and uplift. Normal and tangential stresses in each contact are integrated at each time-step to obtain the resultant contact forces. The models have been implemented within an existing finite element analysis software with multibody capabilities, Abaqus (Simulia Ltd., 2010). Further details of the model are presented in Antolín et al. (2012). Representative applications are presented for railway vehicles under lateral wind action on laterally compliant viaducts, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.
Resumo:
The independent predictions of edge ferromagnetism and the quantum spin Hall phase in graphene have inspired the quest of other two-dimensional honeycomb systems, such as silicene, germanene, stanene, iridates, and organometallic lattices, as well as artificial superlattices, all of them with electronic properties analogous to those of graphene, but a larger spin-orbit coupling. Here, we study the interplay of ferromagnetic order and spin-orbit interactions at the zigzag edges of these graphenelike systems. We find an in-plane magnetic anisotropy that opens a gap in the otherwise conducting edge channels that should result in large changes of electronic properties upon rotation of the magnetization.