976 resultados para finite temperature nuclear matter
Resumo:
We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cation d orbitals, This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a greater contribution than the polarizability to the energy differences between phases. Results for elastic constants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and compared with some experimental data and first-principles calculations. We suggest that the model will be useful for studying finite temperature effects by means of molecular dynamics.
Resumo:
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars, Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.
Resumo:
By use of high intensity XUV radiation from the FLASH free-electron laser at DESY, we have created highly excited exotic states of matter in solid-density aluminum samples. The XUV intensity is sufficiently high to excite an inner-shell electron from a large fraction of the atoms in the focal region. We show that soft-x-ray emission spectroscopy measurements reveal the electronic temperature and density of this highly excited system immediately after the excitation pulse, with detailed calculations of the electronic structure, based on finite-temperature density functional theory, in good agreement with the experimental results.
Resumo:
We perform an extensive study of the properties of global quantum correlations in finite-size one-dimensional quantum spin models at finite temperature. By adopting a recently proposed measure for global quantum correlations (Rulli and Sarandy 2011 Phys. Rev. A 84 042109), called global discord, we show that critical points can be neatly detected even for many-body systems that are not in their ground state. We consider the transverse Ising model, the cluster-Ising model where three-body couplings compete with an Ising-like interaction, and the nearest-neighbor XX Hamiltonian in transverse magnetic field. These models embody our canonical examples showing the sensitivity of global quantum discord close to criticality. For the Ising model, we find a universal scaling of global discord with the critical exponents pertaining to the Ising universality class.
Resumo:
Cette thèse porte sur le calcul de structures électroniques dans les solides. À l'aide de la théorie de la fonctionnelle de densité, puis de la théorie des perturbations à N-corps, on cherche à calculer la structure de bandes des matériaux de façon aussi précise et efficace que possible. Dans un premier temps, les développements théoriques ayant mené à la théorie de la fonctionnelle de densité (DFT), puis aux équations de Hedin sont présentés. On montre que l'approximation GW constitue une méthode pratique pour calculer la self-énergie, dont les résultats améliorent l'accord de la structure de bandes avec l'expérience par rapport aux calculs DFT. On analyse ensuite la performance des calculs GW dans différents oxydes transparents, soit le ZnO, le SnO2 et le SiO2. Une attention particulière est portée aux modèles de pôle de plasmon, qui permettent d'accélérer grandement les calculs GW en modélisant la matrice diélectrique inverse. Parmi les différents modèles de pôle de plasmon existants, celui de Godby et Needs s'avère être celui qui reproduit le plus fidèlement le calcul complet de la matrice diélectrique inverse dans les matériaux étudiés. La seconde partie de la thèse se concentre sur l'interaction entre les vibrations des atomes du réseau cristallin et les états électroniques. Il est d'abord montré comment le couplage électron-phonon affecte la structure de bandes à température finie et à température nulle, ce qu'on nomme la renormalisation du point zéro (ZPR). On applique ensuite la méthode GW au calcul du couplage électron-phonon dans le diamant. Le ZPR s'avère être fortement amplifié par rapport aux calculs DFT lorsque les corrections GW sont appliquées, améliorant l'accord avec les observations expérimentales.
Resumo:
The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach.
Resumo:
Delta isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei (16O), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived for various realistic models of the baryon-baryon interaction are compared to each other. These include local (V28) and nonlocal meson exchange potentials (Bonn2000) but also a model recently derived by the Salamanca group accounting for quark degrees of freedom. The characteristic differences which are obtained for the NDelta and Delta Delta correlation functions are related to the approximation made in deriving the matrix elements for the baryon-baryon interaction.
Resumo:
The influence of Delta isobar components on the ground-state properties of nuclear systems is investigated for nuclear matter as well as finite nuclei. Many-body wave functions, including isobar configurations and binding energies, are evaluated employing the framework of the coupled-cluster theory. It is demonstrated that the effect of isobar configurations depends in a rather sensitive way on the model used for the baryon-baryon interaction. As examples for realistic baryon-baryon interactions with explicit inclusion of isobar channels we use the local (V28) and nonlocal meson-exchange potentials (Bonn2000) but also a model recently developed by the Salamanca group, which is based on a quark picture. The differences obtained for the nuclear observables are related to the treatment of the interaction, the pi-exchange contributions in particular, at high momentum transfers.
Resumo:
We explore the ability of the recently established quasilocal density functional theory for describing the isoscalar giant monopole resonance. Within this theory we use the scaling approach and perform constrained calculations for obtaining the cubic and inverse energy weighted moments (sum rules) of the RPA strength. The meaning of the sum rule approach in this case is discussed. Numerical calculations are carried out using Gogny forces and an excellent agreement is found with HF+RPA results previously reported in literature. The nuclear matter compression modulus predicted in our model lies in the range 210230 MeV which agrees with earlier findings. The information provided by the sum rule approach in the case of nuclei near the neutron drip line is also discussed.
Resumo:
Relativistic heavy ion collisions are the ideal experimental tool to explore the QCD phase diagram. Several results show that a very hot medium with a high energy density and partonic degrees of freedom is formed in these collisions, creating a new state of matter. Measurements of strange hadrons can bring important information about the bulk properties of such matter. The elliptic flow of strange hadrons such as phi, K(S)(0), Lambda, Xi and Omega shows that collectivity is developed at partonic level and at intermediate p(T) the quark coalescence is the dominant mechanism of hadronization. The nuclear modification factor is an another indicator of the presence of a very dense medium. The comparison between measurements of Au+Au and d+Au collisions, where only cold nuclear matter effects are expected, can shed more light on the bulk properties. In these proceedings, recent results from the STAR experiment on bulk matter properties are presented.
Resumo:
In this paper we extend the results presented in (de Ponte, Mizrahi and Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects of reservoirs at finite temperature in a bosonic dissipative network: a chain of coupled harmonic oscillators whatever its topology, i.e., whichever the way the oscillators are coupled together, the strength of their couplings and their natural frequencies. Starting with the case where distinct reservoirs are considered, each one coupled to a corresponding oscillator, we also analyze the case where a common reservoir is assigned to the whole network. Master equations are derived for both situations and both regimes of weak and strong coupling strengths between the network oscillators. Solutions of these master equations are presented through the normal ordered characteristic function. These solutions are shown to be significantly involved when temperature effects are considered, making difficult the analysis of collective decoherence and dispersion in dissipative bosonic networks. To circumvent these difficulties, we turn to the Wigner distribution function which enables us to present a technique to estimate the decoherence time of network states. Our technique proceeds by computing separately the effects of dispersion and the attenuation of the interference terms of the Wigner function. A detailed analysis of the dispersion mechanism is also presented through the evolution of the Wigner function. The interesting collective dispersion effects are discussed and applied to the analysis of decoherence of a class of network states. Finally, the entropy and the entanglement of a pure bipartite system are discussed.
Resumo:
The nuclear matter calculations with realistic nucleon-nucleon potentials present a general scaling between the nucleon-nucleus binding energy, the corresponding saturation density, and the triton binding energy. The Thomas-Efimov three-body effect implies in correlations among low-energy few-body and many-body observables. It is also well known that, by varying the short-range repulsion, keeping the two-nucleon information (deuteron and scattering) fixed, the four-nucleon and three-nucleon binding energies lie on a very narrow band known as a Tjon line. By looking for a universal scaling function connecting the proper scales of the few-body system with those of the many-body system, we suggest that the general nucleus-nucleon scaling mechanism is a manifestation of a universal few-body effect.
Resumo:
We discuss the asymptotic properties of quantum states density for fundamental p-branes which can yield a microscopic interpretation of the thermodynamic quantities in M-theory. The matching of the BPS part of spectrum for superstring and supermembrane gives the possibility of getting membrane's results via string calculations. In the weak coupling limit of M-theory, the critical behavior coincides with the first-order phase transition in the standard string theory at temperature less than the Hagedorn's temperature T-H. The critical temperature at large coupling constant is computed by considering M-theory on manifold with topology R-9 circle times T-2. Alternatively we argue that any finite temperature can be introduced in the framework of membrane thermodynamics.
Resumo:
Effect of bound nucleon internal structure change on nuclear structure functions is investigated based on local quark-hadron duality. The bound nucleon structure functions calculated for charged-lepton and (anti)neutrino scattering are all enhanced in symmetric nuclear matter at large Bjorken-x (x greater than or similar to 0.85) relative to those in a free nucleon. This implies that a part of the enhancement observed in the nuclear structure function F-2 (in the resonance region) at large Bjorken-x (the EMC effect) is due to the effect of the bound nucleon internal structure change. However, the x dependence for the charged-lepton and (anti)neutrino scattering is different. The former (latter) is enhanced (quenched) in the region 0.8 less than or similar to x less than or similar to 0.9 (0.7 less than or similar to x less than or similar to 0.85) due to the difference of the contribution from axial vector forrn factor. Because of these differences charge symmetry breaking in parton distributions will be enhanced in nuclei. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.