930 resultados para fine particles, Positive Matrix Factorisation, receptor modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uranium content of in phosphorites from Pacific seamounts does not exceed 10ppm; it is significantly lower than in phosphorites from submarine continental margins and deposits on land. Phosphate is not the main carrier of uranium, which is inhomogeneously distributed in ferromanganese hydroxide-, phosphate-, silicate- and carbonate materials. Uranium associated with phosphate is not isomorphic admixture. Uranium occurs in rocks in fine particles of unknown composition. Ultramicroscopic inclusions of U(IV) oxides have been also found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical characterization of filter high volume (HV) and Berner impactor (BI) samples PM during RHaMBLe (Reactive Halogens in the Marine Boundary Layer) 2007 shows that the Cape Verde aerosol particles are mainly composed of sea salt, mineral dust and associated water. Minor components are nss-salts, OC and EC. The influence from the African continent on the aerosol constitution was generally small but air masses which came from south-western Europe crossing the Canary Islands transported dust to the sampling site together with other loadings. The mean mass concentration was determined for PM10 to 17 µg/m**3 from impactor samples and to 24.2 µg/m**3 from HV filter samples. Non sea salt (nss) components of PM were found in the submicron fractions and nitrate in the coarse mode fraction. Bromide was found in all samples with much depleted concentrations in the range 1-8 ng/m**3 compared to fresh sea salt aerosol indicating intense atmospheric halogen chemistry. Loss of bromide by ozone reaction during long sampling time is supposed and resulted totally in 82±12% in coarse mode impactor samples and in filter samples in 88±6% bromide deficits. A chloride deficit was determined to 8% and 1% for the coarse mode particles (3.5-10 µm; 1.2-3.5 µm) and to 21% for filter samples. During 14 May with high mineral dust loads also the maximum of OC (1.71 µg/m**3) and EC (1.25 µg/m**3) was measured. The minimum of TC (0.25 µg/m**3) was detected during the period 25 to 27 May when pure marine air masses arrived. The concentrations of carbonaceous material decrease with increasing particle size from 60% for the ultra fine particles to 2.5% in coarse mode PM. Total iron (dust vs. non-dust: 0.53 vs. 0.06 µg/m**3), calcium (0.22 vs. 0.03 µg/m**3) and potassium (0.33 vs. 0.02 µg/m**3) were found as good indicators for dust periods because of their heavily increased concentration in the 1.2 to 3.5 µm fraction as compared to their concentration during the non-dust periods. For the organic constituents, oxalate (78-151 ng/m**3) and methanesulfonic acid (MSA, 25-100 ng/m**3) are the major compounds identified. A good correlation between nss-sulphate and MSA was found for the majority of days indicating active DMS chemistry and low anthropogenic influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 µg/m**2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 µg/m**2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 µg/m**3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 ± 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pico de Navas landslide was a large-magnitude rotational movement, affecting 50x106m3 of hard to soft rocks. The objectives of this study were: (1) to characterize the landslide in terms of geology, geomorphological features and geotechnical parameters; and (2) to obtain an adequate geomechanical model to comprehensively explain its rupture, considering topographic, hydro-geological and geomechanical conditions. The rupture surface crossed, from top to bottom: (a) more than 200 m of limestone and clay units of the Upper Cretaceous, affected by faults; and (b) the Albian unit of Utrillas facies composed of silty sand with clay (Kaolinite) of the Lower Cretaceous. This sand played an important role in the basal failure of the slide due to the influence of fine particles (silt and clay), which comprised on average more than 70% of the sand, and the high content presence of kaolinite (>40%) in some beds. Its geotechnical parameters are: unit weight (δ) = 19-23 KN/m3; friction angle (φ) = 13º-38º and cohesion (c) = 10-48 KN/m2. Its microstructure consists of accumulations of kaolinite crystals stuck to terrigenous grains, making clayey peds. We hypothesize that the presence of these aggregates was the internal cause of fluidification of this layer once wet. Besides the faulted structure of the massif, other conditioning factors of the movement were: the large load of the upper limestone layers; high water table levels; high water pore pressure; and the loss of strength due to wet conditions. The 3D simulation of the stability conditions concurs with our hypothesis. The landslide occurred in the Recent or Middle Holocene, certainly before at least 500 BC and possibly during a wet climate period. Today, it appears to be inactive. This study helps to understand the frequent slope instabilities all along the Iberian Range when facies Utrillas is present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sampling the total air concentration of particulate matter (PM) only provides a basic estimate of exposure that normally not allows correlating with the observed health effects. Therefore is of great importance to recognize the particles size distribution and, particularly, the exposure to fine particles (≤ 2.5 μm). This particles dimension corresponds to the respirable fraction, the one that can implicate local and systemic effects due to particle deposition and clearance from the lungs and transport within the organism. This study intended to describe occupational exposure to PM2.5 in three units related with swine production and consumption, namely: feed production, swine production and swine slaughterhouse. A size-selective particle measuring in five to six workplaces of each unit was performed. Measurements of PM were done using a portable direct-reading hand-held equipment (Lighthouse, model 3016 IAQ). Data showed slaughterhouse unit with higher values, with values ranging from 0.030 to 0.142 mg/m3 (0.073 + 0.043), being the cutting room the workplace with higher values. In feed production unit, values were between 0.026 and 0.033 mg/m3 (0.028 + 0.003) with the warehouse of pharmacy products as the workplace with higher values. Finally, in swine unit values ranged from 0.006 to 0.048 mg/m3 (0.023 + 0.017) with the batteries area presenting the higher values. PM can be rich in fungi and bacteria and their metabolites, such as endotoxins and mycotoxins. Previous publications already showed high contamination in these occupational settings and particles can have an important role in exposure since can easily act as carrier of these agents. Data acquired allow not only a better prediction of particle penetration into respiratory regions of the respiratory tract, but also a better estimation of PM health effects. Moreover, data permit to identify the workplaces where investment should be made to prevent and reduce exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sampling the total air concentration of particulate matter (PM) only provides a basic estimate of exposure that normally not allows correlating with the observed health effects. Therefore is of extreme importance to know the particles size distribution and, in more detail, the exposure to fine particles (≤ 2.5 µm). This particles dimension corresponds to the respirable fraction. This particle fraction can result, besides local effects, in systemic effects due to particle deposition and clearance from the lungs and transport within the organism. This study intended to describe occupational exposure to PM2.5 in three different units located near Lisbon and related with occupational exposure to organic dust, namely: swine and poultry feed production and waste management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research is to study sedimentation mechanism by mathematical modeling in access channels which are affected by tidal currents. The most important factor for recognizing sedimentation process in every water environment is the flow pattern of that environment. It is noteworthy that the flow pattern is affected by the geometry and the shape of the environment as well as the type of existing affects in area. The area under the study in this thesis is located in Bushehr Gulf and the access channels (inner and outer). The study utilizes the hydrodynamic modeling with unstructured triangular and non-overlapping grids, using the finite volume, From method analysis in two scale sizes: large scale (200 m to 7.5km) and small scale (50m to 7.5km) in two different time durations of 15 days and 3.5 days to obtain the flow patterns. The 2D governing equations used in the model are the Depth-Averaged Shallow Water Equations. Turbulence Modeling is required to calculate the Eddy Viscosity Coefficient using the Smagorinsky Model with coefficient of 0.3. In addition to the flow modeling in two different scales and the use of the data of 3.5 day tidal current modeling have been considered to study the effects of the sediments equilibrium in the area and the channels. This model is capable of covering the area which is being settled and eroded and to identify the effects of tidal current of these processes. The required data of the above mentioned models such as current and sediments data have been obtained by the measurements in Bushehr Gulf and the access channels which was one of the PSO's (Port and Shipping Organization) project-titled, "The Sedimentation Modeling in Bushehr Port" in 1379. Hydrographic data have been obtained from Admiralty maps (2003) and Cartography Organization (1378, 1379). The results of the modeling includes: cross shore currents in northern and north western coasts of Bushehr Gulf during the neap tide and also the same current in northern and north eastern coasts of the Gulf during the spring tide. These currents wash and carry fine particles (silt, clay, and mud) from the coastal bed of which are generally made of mud and clay with some silts. In this regard, the role of sediments in the islands of this area and the islands made of depot of dredged sediments should not be ignored. The result of using 3.5 day modeling is that the cross channels currents leads to settlement places in inner and outer channels in tidal period. In neap tide the current enters the channel from upside bend of the two channels and outer channel. Then it crosses the channel oblique in some places of the outer channel. Also the oblique currents or even almost perpendicular current from up slope of inner channel between No. 15 and No. 18 buoys interact between the parallel currents in the channel and made secondary oblique currents which exit as a down-slope current in the channel and causes deposit of sediments as well as settling the suspended sediments carried by these currents. In addition in outer channel the speed of parallel currents in the bend of the channel which is naturally deeper increases. Therefore, it leads to erosion and suspension of sediments in this area. The speed of suspended sediments carried by this current which is parallel to the channel axis decreases when they pass through the shallower part of the channel where it is in the buoys No.7 and 8 to 5 and 6 are located. Therefore, the suspended sediment settles and because of this process these places will be even shallower. Furthermore, the passing of oblique upstream leads to settlement of the sediments in the up-slope and has an additional effect on the process of decreasing the depth of these locations. On the contrary, in the down-slope channel, as the results of sediments and current modeling indicates the speed of current increases and the currents make the particles of down-slope channel suspended and be carried away. Thus, in a vast area of downstream of both channels, the sediments have settled. At the end of the neap tide, the process along with circulations in this area produces eddies which causes sedimentation in the area. During spring some parts of this active location for sedimentation will enter both channels in a reverse process. The above mentioned processes and the places of sedimentation and erosion in inner and outer channels are validated by the sediments equilibrium modeling. This model will be able to estimate the suspended, bed load and the boundary layer thickness in each point of both channels and in the modeled area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface ozone is formed in the presence of NOx (NO + NO2) and volatile organic compounds (VOCs) and is hazardous to human health. A better understanding of these precursors is needed for developing effective policies to improve air quality. To evaluate the year-to-year changes in source contributions to total VOCs, Positive Matrix Factorization (PMF) was used to perform source apportionment using available hourly observations from June through August at a Photochemical Assessment Monitoring Station (PAMS) in Essex, MD for each year from 2007-2015. Results suggest that while gasoline and vehicle exhaust emissions have fallen, the contribution of natural gas sources to total VOCs has risen. To investigate this increasing natural gas influence, ethane measurements from PAMS sites in Essex, MD and Washington, D.C. were examined. Following a period of decline, daytime ethane concentrations have increased significantly after 2009. This trend appears to be linked with the rapid shale gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Back-trajectory analyses similarly show that ethane concentrations at these monitors were significantly greater if air parcels had passed through counties containing a high density of unconventional natural gas wells. In addition to VOC emissions, the compressors and engines involved with hydraulic fracturing operations also emit NOx and particulate matter (PM). The Community Multi-scale Air Quality (CMAQ) Model was used to simulate air quality for the Eastern U.S. in 2020, including emissions from shale gas operations in the Appalachian Basin. Predicted concentrations of ozone and PM show the largest decreases when these natural gas resources are hypothetically used to convert coal-fired power plants, despite the increased emissions from hydraulic fracturing operations expanded into all possible shale regions in the Appalachian Basin. While not as clean as burning natural gas, emissions of NOx from coal-fired power plants can be reduced by utilizing post-combustion controls. However, even though capital investment has already been made, these controls are not always operated at optimal rates. CMAQ simulations for the Eastern U.S. in 2018 show ozone concentrations decrease by ~5 ppb when controls on coal-fired power plants limit NOx emissions to historically best rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser Cladding (LC) is an emerging technology which is used both for coating applications as well as near-net shape fabrication. Despite its significant advantages, such as low dilution and metallurgical bond with the substrate, it still faces issues such as process control and repeatability, which restricts the extension to its applications. The following thesis evaluates the LC technology and tests its potential to be applied to reduce particulate matter emissions from the automotive and locomotive sector. The evaluation of LC technology was carried out for the deposition of multi-layer and multi-track coatings. 316L stainless steel coatings were deposited to study the minimisation of geometric distortions in thin-walled samples. Laser power, as well as scan strategy, were the main variables to achieve this goal. The use of constant power, reduction at successive layers, a control loop control system, and two different scan strategies were studied. The closed-loop control system was found to be practical only when coupled with the correct scan strategy for the deposition of thin walls. Three overlapped layers of aluminium bronze were deposited onto a structural steel pipe for multitrack coatings. The effect of laser power, scan speed and hatch distance on the final geometry of coating were studied independently, and a combined parameter was established to effectively control each geometrical characteristic (clad width, clad height and percentage of dilution). LC was then applied to coat commercial GCI brake discs with tool steel. The optical micrography showed that even with preheating, the cracks that originated from the substrate towards the coating were still present. The commercial brake discs emitted airborne particles whose concentration and size depended on the test conditions used for simulation in the laboratory. The contact of LC cladded wheel with rail emitted significantly less ultra-fine particles while maintaining the acceptable values of coefficient of friction.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PANI-LiNi0.8Co0.2O2 nanocomposite material with improved properties as positive electrode was prepared by a new synthesis method. In a first step, LiNi0.8Co0.2O2 mixed oxide in the form of a fine powder was dispersed in aniline and this suspension was sprayed on the surface of an aqueous solution of HCl and ammonium peroxodisulfate. The resulting PANI-LiNi0.8Co0.2O2 nanocomposite is spontaneously formed by polymerization of the aniline molecules present in the drops together with small particles of the oxide. This method induces the formation of nanocomposites showing a better distribution of the oxide particles in the polymer matrix than that observed in related PANI-LiNi0.8Co0.2O2 microcomposites prepared under ultrasound irradiation to disperse the oxide particles during PANI polymerization. Measurements of electrical conductivity and zeta potential, as well as structural characterization of PANI-LiNi0.8Co0.2O2 nanocomposites, reveal the existence of relatively strong interactions between the conducting polymer and the oxide particles. This feature determines higher values of the electrical conductivity (0.5 S cm(-1)) and of the average operative voltage (3.6 V), as well as of other technological parameters of the nanocomposite when it is used as the positive electrode of rechargeable lithium batteries, in comparison to those of the related microcomposite materials already reported.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The transcriptional response to epidermal growth factor (EGF) was examined in a cultured cell model of adhesion. Gene expression was monitored in human embryonic kidney cells (HEK293) after attachment of cells to the extracellular matrix (ECM) proteins, laminin, and fibronectin, by using complementary DNA micorarrays printed with 1,718 individual human genes. Cluster analysis revealed that the influence of EGF on gene expression, either positive or negative, was largely independent of ECM composition. However, clusters of EGF-regulated genes were identified that were diagnostic of the type of ECM proteins to which cells were attached. In these clusters, attachment of cells to a laminin or fibronectin substrata specifically modified the direction of gene expression changes in response to EGF stimulation. For example, in HEK293 cells attached to fibronectin, EGF stimulated an increase in the expression of some genes; however, genes in the same group were nonresponsive or even suppressed in cells attached to laminin. Many of the genes regulated by EGF and ECM proteins in this manner are involved in ECM and cytoskeletal architecture, protein synthesis, and cell cycle control, indicating that cell responses to EGF stimulation can be dramatically affected by ECM composition.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Airborne particulate matter (PM) is of environmental concern not only in urban but also rural areas that are easily inhalable and have been considered responsible, together with gaseous pollutants, for possible health effects. The objectives of this research study is to generate an extensive data set for ambient PM collected at Belle Glade and Delray Beach that ultimately was used together with published source profiles to predict the contributions of major sources to the overall airborne particle burden in Belle Glade and Delray Beach. ^ The size segregated particle sampling was conducted for one entire year. The samples collected during the months of January and May were further subjected to chemical analysis for organic compounds by Gas Chromatography-Mass Spectrometry. Additional, PM10 sampling was conducted simultaneously with size segregated particle sampling during January and May to analyze for trace elements using Instrumental Neutron Activation Analysis technique. Elements and organic marker compounds were used in Chemical Mass Balance modeling to determine the major source contribution to the ambient fine particle matter burden. ^ Size segregated particle distribution results show bimodal in both sampling sites. Sugarcane pre-harvest burning in the rural site elevated PM10 concentration by about 30% during the sugarcane harvest season compared to sugarcane growing season. Sea salt particles and Saharan dust particles accounted for the external sources. ^ The results of trace element analysis show that Al, Ca, Cs, Eu, Lu, Nd, Sc, Sm, Th, and Yb are more abundant at the rural sampling site. The trace elements Ba, Br, Ce, Cl, Cr, Fe, Gd, Hf, Na, Sb, Ta, V, and W show high abundance at the urban site due to anthropogenic activities except for Na and Cl, which are from sea salt spray. On the other hand, size segregated trace organic compounds measurements show that organic compounds mainly from combustion process were accumulated in PM0.95. ^ In conclusion, major particle sources were determined by the CMB8.2 software as follows: road dust, sugarcane leaf burning, diesel-powered and gasoline powered vehicle exhaust, leaf surface abrasion particles, and a very small fraction of meat cooking. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Elevated neutral lipid content and mRNA expression of class A scavenger receptor (SRA) have been found in the renal cortex of the bovine growth hormone (bGH) mouse model of progressive glomerulosclerosis (GS). We hypothesize that the increased expression of SRA precedes glomerular scarring in this model. Design: Real time RT-PCR and immunofluorescence were employed to measure SRA and collagen types I and IV in the bGH transgenic and control mice at 5 and 12 weeks (wk) of age to determine the chronology of change in SRA expression in relation to glomerular scarring. Alternative mechanisms for increasing glomerular lipid were assessed by measuring mRNA expression levels of low-density lipoprotein receptor (LDL-r), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), and ATP-binding cassette transporter A1 (ABCA1). In addition, the involvement of macrophages in early GS was assessed by CD68 mRNA expression in kidney cortex. Results: Both mRNA and protein levels of SRA were significantly increased in 5-wk bGH compared with control mice, whereas the expression of collagen I and IV was unaltered. Unchanged levels of LDL-r and HMGR mRNA indicate that neither regulated cholesterol uptake via LDL-r nor the cholesterol synthetic pathway played a role in the early lipid increase. The finding of increased ABCA1 expression was an indicator of excess intracellular lipid in the renal cortex of bGH mice at 5 wk. CD68 expression in bGH did not differ significantly from that of controls at 5 wk suggesting that cortical macrophage infiltration was not increased in bGH mice at this time point. Conclusion: An early increase in SRA mRNA and protein expression in the bGH kidney precedes glomerular scarring and is independent of macrophage influx. Published by Elsevier Ltd. on behalf of Growth Hormone Research Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this investigation was to examine in a systematic manner the influence of plasma protein binding on in vivo pharmacodynamics. Comparative pharmacokinetic-pharmacodynamic studies with four beta blockers were performed in conscious rats, using heart rate under isoprenaline-induced tachycardia as a pharmacodynamic endpoint. A recently proposed mechanism-based agonist-antagonist interaction model was used to obtain in vivo estimates of receptor affinities (K(B),(vivo)). These values were compared with in vitro affinities (K(B),(vitro)) on the basis of both total and free drug concentrations. For the total drug concentrations, the K(B),(vivo) estimates were 26, 13, 6.5 and 0.89 nM for S(-)-atenolol, S(-)-propranolol, S(-)-metoprolol and timolol. The K(B),(vivo) estimates on the basis of the free concentrations were 25, 2.0, 5.2 and 0.56 nM, respectively. The K(B),(vivo)-K(B),(vitro) correlation for total drug concentrations clearly deviated from the line of identity, especially for the most highly bound drug S(-)-propranolol (ratio K(B),(vivo)/K(B),(vitro) similar to 6.8). For the free drug, the correlation approximated the line of identity. Using this model, for beta-blockers the free plasma concentration appears to be the best predictor of in vivo pharmacodynamics. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3816-3828, 2009