979 resultados para field crops
Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger
Resumo:
Soil moisture and soil temperature affect pre-harvest infection with Aspergillus flavus and production of aflatoxin. The objectives of our field research in Niger, West Africa, were to: (i) examine the effects of sowing date and irrigation treatments on pod yield, infection with A. flavus and aflatoxin concentration; and (ii) to quantify relations between infection, aflatoxin concentration and soil moisture stress. Seed of an aflatoxin susceptible peanut cv. JL24 was sown at two to four different sowing dates under four irrigation treatments (rainfed and irrigation at 7, 14 and 21 days intervals) between 1991 and 1994, giving 40 different 'environments'. Average air and soil temperatures of 28-34 degrees C were favourable for aflatoxin contamination. CROPGRO-peanut model was used to simulate the occurrence of moisture stress. The model was able to simulate yields of peanut well over the 40 environments (r(2) = 0.67). In general, early sowing produced greater pod yields, as well as less infection and lower aflatoxin concentration. There were negative linear relations between infection (r(2) = 0.62) and the average simulated fraction of extractable soil water (FESW) between flowering and harvest, and between aflatoxin concentration (r(2) = 0.54) and FESW in the last 25 days of pod-filling. This field study confirms that infection and aflatoxin concentration in peanut can be related to the occurrence of soil moisture stress during pod-filling when soil temperatures are near optimal for A. flavus. These relations could form the basis of a decision-support system to predict the risk of aflatoxin contamination in peanuts in similar environments. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of applying nitrogen (30 or 40 kg N/ha) to wheat crops at and after anthesis, after 200 kg N/ha had already been applied to the soil during stem extension, were studied in field experiments comprising complete factorial combinations of different cultivars, fungicide applications and nitrogen treatments. Actual recoveries of late-season fertilizer nitrogen (LSFN), as indicated by N-15 studies, interacted with cultivar and fungicide treatment, and depended on nitrogen source (Urea applied as a solution to the foliage, or as ammonium nitrate applied to the soil) and year. These interactions, however, were not reflected in apparent fertilizer recoveries ((N in grain with LSFN - N in grain without LSFN)/N applied as LSFN), or in the crude protein concentration. Apparent fertilizer recovery was always lower than actual recoveries, and declined during grain filling. Fertilizer treatments with higher actual fertilizer recoveries were associated with lower net renlobilisation of non-LSFN (net remobilised N = N in above ground crop at anthesis - N in non-grain, above ground crop at harvest). LSFN also increased mineral nitrogen in the soil at harvest even when applied as a solution to the foliage. These effects are discussed in relation to potential grain N demand. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Complementarity in acquisition of nitrogen (N) from soil and N-2-fixation within pea and barley intercrops was studied in organic field experiments across Western Europe (Denmark, United Kingdom, France, Germany and Italy). Spring pea and barley were sown either as sole crops, at the recommended plant density (P100 and B100, respectively) or in replacement (P50B50) or additive (P100B50) intercropping designs, in each of three cropping seasons (2003-2005). Irrespective of site and intercrop design, Land Equivalent Ratios (LER) between 1.4 at flowering and 1.3 at maturity showed that total N recovery was greater in the pea-barley intercrops than in the sole Crops Suggesting a high degree of complementarity over a wide range of growing conditions. Complementarity was partly attributed to greater soil mineral N acquisition by barley, forcing pea to rely more on N-2-fixation. At all sites the proportion of total aboveground pea N that was derived from N-2-fixation was greater when intercropped with barley than when grown as a sole crop. No consistent differences were found between the two intercropping designs. Simultaneously, the accumulation Of Phosphorous (P), potassium (K) and sulphur (S) in Danish and German experiments was 20% higher in the intercrop (P50B50) than in the respective sole crops, possibly influencing general crop yields and thereby competitive ability for other resources. Comparing all sites and seasons, the benefits of organic pea-barley intercropping for N acquisition were highly resilient. It is concluded that pea-barley intercropping is a relevant cropping strategy to adopt when trying to optimize N-2-fixation inputs to the cropping system. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pigeonpea is grown in wide range of cropping systems and environments, both in East Africa and internationally. An important feature of adaptation to these diverse systems and environments is the timing of flowering and maturity. Most traditional cultivars grown in Tanzania are medium to late flowering types (> 150 days), although extra-early flowering cultivars are now available. The aim of the present investigation was to measure biomass (BY) and seed (SY) yield of a set of phenologically diverse cultivars to determine their adaptation to contrasting environments in Tanzania. Ten cultivars, from extra-early (60 days) to late (> 180 days) flowering, were planted at six locations varying in mean temperature, photoperiod and rainfall. Days to flowering (DTF) and maturity, and above-ground BY and SY at maturity, were measured. A stress index (ETr:ETm ratio, 100 = no stress) was computed for each site. Rainfall and the stress index at the different sites varied from 322 to 1297 mm and 57 to 89, respectively. Among cultivars, DTF varied from 55 to 320 days, the stress index from 3 to 98, BY from 700 to 25,000 kg ha(-1), and SY from 0 to 4000 kg ha(-1). The highest yielding environment was at Selian, where mean temperatures were favourable (19 degrees C) and no stress occurred. At all sites there was an optimum DTF, which for SY varied from < 100 to 150 days. The best adapted cultivars were ICP 7035, ICPL 90094, Kat 50 and QP37, which were all medium flowering (c. 150 day) types. Extra-early cultivars such as ICPL 86005 also showed considerable potential, especially in short-season environments. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
As the ideal method of assessing the nutritive value of a feedstuff, namely offering it to the appropriate class of animal and recording the production response obtained, is neither practical nor cost effective a range of feed evaluation techniques have been developed. Each of these balances some degree of compromise with the practical situation against data generation. However, due to the impact of animal-feed interactions over and above that of feed composition, the target animal remains the ultimate arbitrator of nutritional value. In this review current in vitro feed evaluation techniques are examined according to the degree of animal-feed interaction. Chemical analysis provides absolute values and therefore differs from the majority of in vitro methods that simply rank feeds. However, with no host animal involvement, estimates of nutritional value are inferred by statistical association. In addition given the costs involved, the practical value of many analyses conducted should be reviewed. The in sacco technique has made a substantial contribution to both understanding rumen microbial degradative processes and the rapid evaluation of feeds, especially in developing countries. However, the numerous shortfalls of the technique, common to many in vitro methods, the desire to eliminate the use of surgically modified animals for routine feed evaluation, paralleled with improvements in in vitro techniques, will see this technique increasingly replaced. The majority of in vitro systems use substrate disappearance to assess degradation, however, this provides no information regarding the quantity of derived end-products available to the host animal. As measurement of volatile fatty acids or microbial biomass production greatly increases analytical costs, fermentation gas release, a simple and non-destructive measurement, has been used as an alternative. However, as gas release alone is of little use, gas-based systems, where both degradation and fermentation gas release are measured simultaneously, are attracting considerable interest. Alternative microbial inocula are being considered, as is the potential of using multi-enzyme systems to examine degradation dynamics. It is concluded that while chemical analysis will continue to form an indispensable part of feed evaluation, enhanced use will be made of increasingly complex in vitro systems. It is vital, however, the function and limitations of each methodology are fully understood and that the temptation to over-interpret the data is avoided so as to draw the appropriate conclusions. With careful selection and correct application in vitro systems offer powerful research tools with which to evaluate feedstuffs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A model was devised to describe simultaneously the grain masses of water and dry matter against thermal time during grain filling and maturation of winter wheat. The model accounted for a linear increase in water mass of duration anthesis-m(1) (end of rapid water assimilation phase) and rate a, followed by a more stable water mass until in,, after which water mass declined rapidly at rate e. Grain dry matter was described as a linear increase of rate bgf until a maximum size (maxgf) was attained at m(2).The model was fitted to plot data from weekly samples of grains taken from replicated field experiments investigating effects of grain position (apical or medial), fungicide (five contrasting treatments), sowing date (early or late), cultivar (Malacca or Shamrock) and season (2001/2002 and 2002/2003) on grain filling. The model accounted for between 83 and 99% of the variation ( 2) when fitted to data from individual plots, and between 97 and 99% when fitted to treatment means. Endosperm cell number of grains from early-sown plots in the first season were also counted. Differences in maxgf between grain positions and also between cultivars were mostly the result of effects on bgf and were empirically associated with water mass at nil. Fungicide application controlled S. tritici and powdery mildew infection, delayed flag leaf senescence, increased water mass at m(1) (wm(1)), and also increased m(2), bgf and maxgf. Fungicide effects on water mass were detected before fungicide effects on dry matter, but comparison of the effects of individual fungicide treatments showed no evidence that effects on wm(1), nor on endosperm cell numbers at about m(1), were required for fungicide effects on maxgf, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
When assessing hypotheses, the possibility and consequences of false-positive conclusions should be considered along with the avoidance of false-negative ones. A recent assessment of the system of rice intensification (SRI) by McDonald et al. [McDonald, A.J., Hobbs, P.R., Riha, S.J., 2006. Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Res. 96, 31-36] provides a good example where this was not done as it was preoccupied with avoiding false-positives only. It concluded, based on a desk study using secondary data assembled selectively from diverse sources and with a 95% level of confidence, that 'best management practices' (BMPs) on average produce 11% higher rice yields than SRI methods, and that, therefore, SRI has little to offer beyond what is already known by scientists.
Resumo:
Grain legumes, such as peas (Pisum sativum L.), are known to be weak competitors against weeds when grown as the sole crop. In this study, the weed-suppression effect of pea–barley (Hordeum vulgare L.)intercropping compared to the respective sole crops was examined in organic field experiments across Western Europe (i.e., Denmark, the United Kingdom, France, Germany and Italy). Spring pea (P) and barley(B) were sown either as the sole crop, at the recommended plant density (P100 and B100, respectively), or in replacement (P50B50) or additive (P100B50)intercropping designs for three seasons (2003–2005). The weed biomass was three times higher under the pea sole crops than under both the intercrops and barley sole crops at maturity. The inclusion of joint experiments in several countries and various growing conditions showed that intercrops maintain a highly asymmetric competition over weeds, regardless of the particular weed infestation (species and productivity), the crop biomass or the soil nitrogen availability. The intercropping weed suppression was highly resilient, whereas the weed suppression in pea sole crops was lower and more variable. The pea–barley intercrops exhibited high levels of weed suppression, even with a low percentage of barley in the total biomass. Despite a reduced leaf area in the case of a low soil N availability, the barley sole crops and intercrops displayed high weed suppression, probably because of their strong competitive capability to absorb soil N. Higher soil N availabilities entailed increased leaf areas and competitive ability for light, which contributed to the overall competitive ability against weeds for all of the treatments. The contribution of the weeds in the total dry matter and soil N acquisition was higher in the pea sole crop than in the other treatments, in spite of the higher leaf areas in the pea crops.
Resumo:
Near-isogenic lines (NILs) of winter wheat varying for alleles for reduced height (Rht), gibberellin (GA) response and photoperiod insensitivity (Ppd-D1a) in cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cv. Maris Widgeon (rht (tall), Rht-D1b, Rht-B1c) backgrounds were compared to investigate main effects and interactions with tillage (plough-based, minimum-, and zero-tillage) over two years. Both minimum- and zero- tillage were associated with reduced grain yields allied to reduced harvest index, biomass accumulation, interception of photosynthetically active radiation (PAR), and plant populations. Grain yields were optimized at mature crop heights of around 740mm because this provided the best compromise between harvest index which declined with height, and above ground biomass which increased with height. Improving biomass with height was due to improvements in both PAR interception and radiation-use efficiency. Optimum height for grain yield was unaffected by tillage system or GA-sensitivity. After accounting for effects of height, GA insensitivity was associated with increased grain yields due to increased grains per spike, which was more than enough to compensate for poorer plant establishment and lower mean grain weights compared to the GA-sensitive lines. Although better establishment was possible with GA-sensitive lines, there was no evidence that this effect interacted with tillage method. We find, therefore, little evidence to question the current adoption of wheats with reduced sensitivity to GA in the UK, even as tillage intensity lessens.
Resumo:
This study investigated the effects of increased genetic diversity in winter wheat (Triticum aestivum L.), either from hybridization across genotypes or from physical mixing of lines, on grain yield, grain quality, and yield stability in different cropping environments. Sets of pure lines (no diversity), chosen for high yielding ability or high quality, were compared with line mixtures (intermediate level of diversity), and lines crossed with each other in composite cross populations (CCPn, high diversity). Additional populations containing male sterility genes (CCPms) to increase outcrossing rates were also tested. Grain yield, grain protein content, and protein yield were measured at four sites (two organically-managed and two conventionally-managed) over three years, using seed harvested locally in each preceding year. CCPn and mixtures out-yielded the mean of the parents by 2.4% and 3.6%, respectively. These yield differences were consistent across genetic backgrounds but partly inconsistent across cropping environments and years. Yield stability measured by environmental variance was higher in CCPn and CCPms than the mean of the parents. An index of yield reliability tended to be higher in CCPn, CCPms and mixtures than the mean of the parents. Lin and Binns’ superiority values of yield and protein yield were consistently and significantly lower (i.e. better) in the CCPs than in the mean of the parents, but not different between CCPs and mixtures. However, CCPs showed greater early ground cover and plant height than mixtures. When compared with the (locally non-predictable) best-yielding pure line, CCPs and mixtures exhibited lower mean yield and somewhat lower yield reliability but comparable superiority values. Thus, establishing CCPs from smaller sets of high-performing parent lines might optimize their yielding ability. On the whole, the results demonstrate that using increased within-crop genetic diversity can produce wheat crops with improved yield stability and good yield reliability across variable and unpredictable cropping environments.
Resumo:
O presente trabalho pesquisa como o campo foi interpretado nos anos de 1920 pelos intelectuais fluminenses. Por meio da analise de três revistas – Illustração Fluminense (1921-1924), A Agricultura Fluminense: revista da Sociedade de Agricultura e Indústrias Ruraes (1926) e A Fazenda Fluminense (1929-1930) – busca-se compreender como o rural foi uma via alternativa para a modernização do Estado do Rio de Janeiro. A revista foi um gênero de imprensa símbolo da modernidade que produzia novas sensibilidades e comportamentos em uma época de transformações. A economia fluminense encontrava-se em crise desde o final do século XIX fazendo com que o Estado passasse a ter um papel secundário na política nacional republicana. O projeto das revistas agrícolas analisadas desejavam reconstruir essa identidade fluminense ao propor um campo modernizado, com novas técnicas de cultivo, com políticas de diversificação agrícola, com investimentos na educação rural e com pequenas propriedades. O rural, tantas vezes ligado ao “atraso”, integrou as propostas modernistas fluminenses discutidas no início do século XX.
Resumo:
Seasonal changes in vegetative growth, leaf gas exchanges, carbon isotope discrimination (Delta) and carbohydrate status were monitored in de-fruited coffee trees (Coffea arabica L.) grown in the field, from October 1998 through September 1999, in Vicosa (20degrees45'S, 42degrees15'W, 650 m a.s.l.), southeastern Brazil. of the total growth over the 12-month study period, 78% occurred in the warm, rainy season (October-March), and 22% during the cool, dry season (April-September). Throughout the active growth period, the rate of net carbon assimilation (A) averaged 8.6 mumol m(-2) s(-1), against 3.4 mumol m(-2) s(-1) during the period of reduced growth. In the active period, growth, unlike A or Delta, was strongly negatively correlated with air temperature. In contrast, growth and A were both correlated positively, and Delta correlated negatively, with air temperature during the reduced growth period. However, the depressions of A and growth might have simply run in parallel, without any causal relationship. Changes in A appeared to be largely due to stomatal limitations in the active growing season, with non-stomatal ones prevailing in the slow growth period. Foliar carbohydrates seemed not to have contributed appreciably to changes in growth rates and photosynthesis. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An experiment was conducted to study the effects of liming and drying method on Ca nutrition, fungus infection and aflatoxin production potential on peanut (Arachis hypogea) grains. Peanut cv. Botutatu was grown in the absence or presence of liming to raise the base saturation of the soil from 20 to 56%. Calcium contents of the soil were increased from 5.5 to 14.6 mmol((c))kg-1 and pH from 4.2 to 4.9. After harvest, plants and pods were dried in (1) shade, (2) field down to 100 g water kg-1 (3) field down to 250 g water kg-1 and transferred to a forced-air oven at 30°C, (4) field down to 360 g water kg-1 and transferred to a forced-air oven at 30°C. Calcium contents were analyzed in the grains, pericarps and seed coats. The incidence of Aspergillus spp., Penicillium spp., Rhizopus spp. and potential aflatoxin production in vitro were evaluated, as well as the seed coat thickness. The seed coat was thicker when peanut was grown in the presence of lime, leading to a decrease in seed infection by Aspergillus spp. and Penicillium spp. When plants were dried in shade, the growth of aflatoxinogenic fungi was independent of liming. However, in plants dried in the field or field + oven, the development of these fungi was decreased and even suppressed when the Ca content of the seed coat was increased from 2.2 to 5.5 g kg-1.
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA