869 resultados para fast axis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4 expression in HIV replication is paradoxical: HIV entry requires high cell-surface CD4 densities, but replication requires CD4 down-modulation. However, is CD4 density in HIV+ patients affected over time? Do changes in CD4 density correlate with disease progression? Here, we examined the role of CD4 density for HIV disease progression by longitudinally quantifying CD4 densities on CD4+ T cells and monocytes of ART-naive HIV+ patients with different disease progression rates. This was a retrospective study. We defined three groups of HIV+ patients by their rate of CD4+ T cell loss, calculated by the time between infection and reaching a CD4 level of 200 cells/microl: fast (<7.5 years), intermediate (7.5-12 years), and slow progressors (>12 years). Mathematical modeling permitted us to determine the maximum CD4+ T cell count after HIV seroconversion (defined as "postseroconversion CD4 count") and longitudinal profiles of CD4 count and density. CD4 densities were quantified on CD4+ T cells and monocytes from these patients and from healthy individuals by flow cytometry. Fast progressors had significantly lower postseroconversion CD4 counts than other progressors. CD4 density on T cells was lower in HIV+ patients than in healthy individuals and decreased more rapidly in fast than in slow progressors. Antiretroviral therapy (ART) did not normalize CD4 density. Thus, postseroconversion CD4 counts define individual HIV disease progression rates that may help to identify patients who might benefit most from early ART. Early discrimination of slow and fast progressors suggests that critical events during primary infection define long-term outcome. A more rapid CD4 density decrease in fast progressors might contribute to progressive functional impairments of the immune response in advanced HIV infection. The lack of an effect of ART on CD4 density implies a persistent dysfunctional immune response by uncontrolled HIV infection.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A basic prerequisite for in vivo X-ray imaging of the lung is the exact determination of radiation dose. Achieving resolutions of the order of micrometres may become particularly challenging owing to increased dose, which in the worst case can be lethal for the imaged animal model. A framework for linking image quality to radiation dose in order to optimize experimental parameters with respect to dose reduction is presented. The approach may find application for current and future in vivo studies to facilitate proper experiment planning and radiation risk assessment on the one hand and exploit imaging capabilities on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We focus on full-rate, fast-decodable space–time block codes (STBCs) for 2 x 2 and 4 x 2 multiple-input multiple-output (MIMO) transmission. We first derive conditions and design criteria for reduced-complexity maximum-likelihood (ML) decodable 2 x 2 STBCs, and we apply them to two families of codes that were recently discovered. Next, we derive a novel reduced-complexity 4 x 2 STBC, and show that it outperforms all previously known codes with certain constellations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drug discovery process has been deeply transformed recently by the use of computational ligand-based or structure-based methods, helping the lead compounds identification and optimization, and finally the delivery of new drug candidates more quickly and at lower cost. Structure-based computational methods for drug discovery mainly involve ligand-protein docking and rapid binding free energy estimation, both of which require force field parameterization for many drug candidates. Here, we present a fast force field generation tool, called SwissParam, able to generate, for arbitrary small organic molecule, topologies, and parameters based on the Merck molecular force field, but in a functional form that is compatible with the CHARMM force field. Output files can be used with CHARMM or GROMACS. The topologies and parameters generated by SwissParam are used by the docking software EADock2 and EADock DSS to describe the small molecules to be docked, whereas the protein is described by the CHARMM force field, and allow them to reach success rates ranging from 56 to 78%. We have also developed a rapid binding free energy estimation approach, using SwissParam for ligands and CHARMM22/27 for proteins, which requires only a short minimization to reproduce the experimental binding free energy of 214 ligand-protein complexes involving 62 different proteins, with a standard error of 2.0 kcal mol(-1), and a correlation coefficient of 0.74. Together, these results demonstrate the relevance of using SwissParam topologies and parameters to describe small organic molecules in computer-aided drug design applications, together with a CHARMM22/27 description of the target protein. SwissParam is available free of charge for academic users at www.swissparam.ch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At 3 T, the effective wavelength of the RF field is comparable to the dimension of the human body, resulting in B1 standing wave effects and extra variations in phase. This effect is accompanied by an increase in B0 field inhomogeneity compared to 1.5 T. This combination results in nonuniform magnetization preparation by the composite MLEV weighted T2 preparation (T2 Prep) sequence used for coronary magnetic resonance angiography (MRA). A new adiabatic refocusing T2 Prep sequence is presented in which the magnetization is tipped into the transverse plane with a hard RF pulse and refocused using a pair of adiabatic fast-passage RF pulses. The isochromats are subsequently returned to the longitudinal axis using a hard RF pulse. Numerical simulations predict an excellent suppression of artifacts originating from B1 inhomogeneity while achieving good contrast enhancement between coronary arteries and surrounding tissue. This was confirmed by an in vivo study, in which coronary MR angiograms were obtained without a T2 Prep, with an MLEV weighted T2 Prep and the proposed adiabatic T2 Prep. Improved quantitative and qualitative coronary MRA image measurement was achieved using the adiabatic T2 Prep at 3 T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two concentration methods for fast and routine determination of caffeine (using HPLC-UV detection) in surface, and wastewater are evaluated. Both methods are based on solid-phase extraction (SPE) concentration with octadecyl silica sorbents. A common “offline” SPE procedure shows that quantitative recovery of caffeine is obtained with 2 mL of an elution mixture solvent methanol-water containing at least 60% methanol. The method detection limit is 0.1 μg L−1 when percolating 1 L samples through the cartridge. The development of an “online” SPE method based on a mini-SPE column, containing 100 mg of the same sorbent, directly connected to the HPLC system allows the method detection limit to be decreased to 10 ng L−1 with a sample volume of 100 mL. The “offline” SPE method is applied to the analysis of caffeine in wastewater samples, whereas the “on-line” method is used for analysis in natural waters from streams receiving significant water intakes from local wastewater treatment plants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.